Highway Project
P.I.N. 5759.70
Rogers Road and Cloverbank Road
Railroad Quiet Zones
Town of Hamburg
Erie County
LIST OF PREPARERS

Group Director Responsible for Production of the Design Approval Document:

Dennis J. Elias, PE, Senior Associate, Erdman Anthony

Description of Work Performed by Firm: Directed the preparation of the Design Approval Document in accordance with established standards, policies, regulations and procedures, except as otherwise explained in this document.

Note: It is a violation of law for any person, unless they are acting under the direction of a licensed professional engineer, architect, landscape architect, or land surveyor, to alter an item in any way. If an item bearing the stamp of a licensed professional is altered, the altering engineer, architect, landscape architect, or land surveyor shall stamp the document and include the notation “altered by” followed by their signature, the date of such alteration, and a specific description of the alteration.
Table of Contents

CHAPTER 1 – EXECUTIVE SUMMARY

1.1. Introduction .. 1-1
1.2. Purpose and Need .. 1-1
 1.2.1. Where is the Project Located? ... 1-1
 1.2.2. Why is the Project Needed? .. 1-2
 1.2.3. What are the Objectives/Purposes of the Project? .. 1-2
1.3. What Alternative(s) Are Being Considered? ... 1-2
1.4. How will the Alternative(s) Affect the Environment? .. 1-5
1.5 What Are The Costs & Schedules? ... 1-6
1.6 Which Alternative is Preferred? .. 1-6
1.7 What are the Opportunities for Public Involvement? ... 1-7

CHAPTER 2 – PROJECT CONTEXT: HISTORY, TRANSPORTATION PLANS, CONDITIONS AND NEEDS

2.1. Project History .. 2-1
2.2. Transportation Plans and Land Use ... 2-1
 2.2.1. Local Plans for the Project Area ... 2-1
 2.2.1.1. Local Master Plan .. 2-1
 2.2.1.2. Local Private Development Plans ... 2-1
 2.2.2. Transportation Corridor .. 2-1
 2.2.2.1. Importance of the Project Route Segment ... 2-1
 2.2.2.2. Alternate Routes .. 2-1
 2.2.2.3. Corridor Deficiencies and Needs .. 2-1
 2.2.2.4. Transportation Plans .. 2-2
 2.2.2.5. Abutting Highway Segments and Future Plans for Abutting Highway Segments 2-2
 2.3. Transportation Conditions, Deficiencies and Engineering Considerations 2-2
 2.3.1. Operations (Traffic and Safety) & Maintenance .. 2-2
 2.3.1.1. Functional Classification and National Highway System (NHS) 2-2
 2.3.1.2. Control of Access ... 2-3
 2.3.1.3. Traffic Control Devices .. 2-3
 2.3.1.4. Intelligent Transportation Systems (ITS) ... 2-3
 2.3.1.5. Speeds and Delay .. 2-3
 2.3.1.6. Traffic Volumes ... 2-3
 2.3.1.7. Level of Service and Mobility .. 2-4
 2.3.1.8. Safety Considerations, Accident History and Analysis .. 2-4
 2.3.1.9. Existing Police, Fire Protection and Ambulance Access .. 2-4
 2.3.1.10. Parking Regulations and Parking Related Conditions .. 2-4
 2.3.1.11. Lighting .. 2-4
 2.3.1.12. Ownership and Maintenance Jurisdiction .. 2-4
 2.3.2. Multimodal .. 2-5
 2.3.2.1. Pedestrians ... 2-5
 2.3.2.2. Bicyclists .. 2-5
 2.3.2.3. Transit .. 2-5
 2.3.2.4. Airports, Railroad Stations, and Ports ... 2-5
 2.3.2.5. Access to Recreation Areas (Parks, Trails, Waterways, State Lands) 2-5
 2.3.3. Infrastructure .. 2-5
 2.3.3.1. Existing Highway Section .. 2-5
 2.3.3.2. Geometric Design Elements Not Meeting 2R/3R or Bridge Rehabilitation Standards 2-6
 2.3.3.3. Pavement and Shoulders ... 2-6
 2.3.3.4. Drainage Systems .. 2-7
 2.3.3.5. Geotechnical .. 2-7
 2.3.3.6. Structures .. 2-7
 2.3.3.7. Hydraulics of Bridges and Culverts ... 2-7
 2.3.3.8. Guide Railing, Median Barriers and Impact Attenuators .. 2-7

LIST OF PREPARERS

COVER (Title / PIN / Location)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.9. Utilities</td>
<td>2-8</td>
</tr>
<tr>
<td>2.3.3.10. Railroad Facilities</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3.4. Landscape and Environmental Enhancement Opportunities</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3.4.1. Landscape</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3.4.2. Opportunities for Environmental Improvements</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3.5. Miscellaneous</td>
<td>2-9</td>
</tr>
</tbody>
</table>

CHAPTER 3 – ALTERNATIVES

3.1. Alternatives Considered and Eliminated from Further Study | 3-1
3.2. Feasible Build Alternatives | 3-2
 3.2.1. Description of Feasible Alternatives | 3-2
 3.2.2. Preferred Alternative | 3-5
 3.2.3. Design Criteria for Feasible Alternative(s) | 3-5
 3.2.3.1. Design Standards | 3-5
 3.2.3.2. Critical Design Elements | 3-5
 3.2.3.3. Other Design Parameters | 3-8
 3.3. Engineering Considerations | 3-8
 3.3.1. Operations (Traffic and Safety) & Maintenance | 3-8
 3.3.1.1. Functional Classification and National Highway System | 3-8
 3.3.1.2. Control of Access | 3-8
 3.3.1.3. Traffic Control Devices | 3-8
 3.3.1.4. Intelligent Transportation Systems (ITS) | 3-8
 3.3.1.5. Speeds and Delay | 3-9
 3.3.1.6. Traffic Data Forecast | 3-9
 3.3.1.7. Level of Service and Mobility | 3-9
 3.3.1.8. Safety Considerations, Accident History and Analysis | 3-10
 3.3.1.9. Impacts on Police, Fire Protection and Ambulance Access | 3-10
 3.3.1.10. Parking Regulations and Parking Related Issues | 3-10
 3.3.1.11. Lighting | 3-10
 3.3.1.12. Ownership and Maintenance Jurisdiction | 3-10
 3.3.1.13. Constructability Review | 3-10
 3.3.2. Multimodal | 3-11
 3.3.2.1. Pedestrians | 3-11
 3.3.2.2. Bicyclists | 3-11
 3.3.2.3. Transit | 3-11
 3.3.2.4. Airports, Railroad Stations, and Ports | 3-11
 3.3.2.5. Access to Recreation Areas (Parks, Trails, Waterways, and State Lands) | 3-11
 3.3.3. Infrastructure | 3-11
 3.3.3.1. Proposed Highway Section | 3-11
 3.3.3.2. Special Geometric Design Elements | 3-12
 3.3.3.3. Pavement and Shoulders | 3-12
 3.3.3.4. Drainage Systems | 3-12
 3.3.3.5. Geotechnical | 3-12
 3.3.3.6. Structures | 3-12
 3.3.3.7. Hydraulics of Bridges and Culverts | 3-12
 3.3.3.8. Guide Railing, Median Barriers and Impact Attenuators | 3-13
 3.3.3.9. Utilities | 3-13
 3.3.3.10. Railroad Facilities | 3-13
 3.3.4. Landscape and Environmental Enhancements | 3-14
 3.3.4.1. Landscape Development | 3-14
 3.3.4.2. Environmental Enhancements | 3-14
 3.3.5. Miscellaneous | 3-14
Table of Contents

CHAPTER 4 - SOCIAL, ECONOMIC AND ENVIRONMENTAL CONSIDERATIONS

4.1. Introduction ... 4-1

4.1.1. Environmental Classification and Lead Agencies.. 4-1

4.2. Environmental Considerations .. 4-1

4.2.1. Screenings and Preliminary Investigations... 4-1

4.2.1.1. General Ecology and Endangered Species... 4-1

4.2.1.2. Ground Water.. 4-2

4.2.1.3. Surface Water... 4-2

4.2.1.4. State Wetlands.. 4-2

4.2.1.5. Federal Jurisdictional Wetlands... 4-2

4.2.1.6. Floodplains... 4-3

4.2.1.7. Coastal Zone Management... 4-3

4.2.1.8. Navigable Waterways.. 4-3

4.2.1.9. Cultural Resource Investigations.. 4-3

4.2.1.10. Parks... 4-3

4.2.1.11. Hazardous Waste/Contaminated Materials.. 4-3

4.2.1.12. Asbestos.. 4-6

4.2.1.13. Noise... 4-6

4.2.1.14. Air Quality... 4-6

4.2.1.15. Energy... 4-6

4.2.1.16. Farmlands... 4-7

4.2.1.17. Visual Impacts... 4-7

4.2.1.18. Critical Environmental Areas.. 4-7

4.2.1.19. Anticipated Environmental Permits... 4-7
Appendices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Plans, Profiles & Typical Sections</td>
</tr>
<tr>
<td>B</td>
<td>Environmental Information</td>
</tr>
<tr>
<td>C</td>
<td>Traffic Information</td>
</tr>
<tr>
<td>D</td>
<td>Pavement Information</td>
</tr>
<tr>
<td>E</td>
<td>Structures Information</td>
</tr>
<tr>
<td>F</td>
<td>Non-Standard Features Justification</td>
</tr>
<tr>
<td>G</td>
<td>Public Involvement Plan and Input from Stakeholders including Public</td>
</tr>
</tbody>
</table>
CHAPTER 1 – EXECUTIVE SUMMARY

1.1. Introduction

This report was prepared in accordance with the NYSDOT Procedures for Locally Administered Federal Aid Projects, the State Environmental Quality Review Act (SEQR, 6 NYCRR Part 617) and National Environmental Policy Act (NEPA, 23 CFR 771). The SEQR Lead Agency is the Town of Hamburg.

1.2. Purpose and Need

1.2.1. Where Is the Project Located?

The project is located in the Town of Hamburg, Erie County, NY. The project is located at the CSX Transportation (CSXT) and Norfolk Southern (NS) railroad crossings at Rogers Road (C.R. 464) and Cloverbank Road and extends approximately 150 feet east and west of the crossings.

Exhibit 1.2.1
Project Location Map
1.2.2. Why Is the Project Needed?

On June 25, 2005, the Federal Railroad Administration (FRA) issued its Final Train Horn Rule (49 CFR Parts 222 and 229). Under the Rule, locomotive engineers must begin to sound train horns at least 15 seconds, and no more than 20 seconds, in advance of all public grade crossings. Train horns must be sounded in a standardized pattern of 2 long, 1 short and 1 long blasts. The pattern must be repeated or prolonged until the lead locomotive or lead cab car occupies the grade crossing. The minimum sound level of the locomotive horn is 96 decibels (dBA) 100 feet in front of the train in its direction of travel and the maximum sound level is 110 decibels. While the locomotive horn is an effective deterrent to accidents at grade crossings, the sound level from the locomotive horn creates a significant noise that often depreciates the quality of life in communities where trains operate.

Residents of the Town of Hamburg have been significantly affected by these recent changes. The Town has eight highway grade crossings located in a 12-mile corridor operated by two Class 1 Railroads – CSX Transportation and Norfolk Southern Corporation. CSXT operates an average of 86 trains per day on its triple-track mainline and NS operates upwards of 14 on its single-track mainline, depending on their operational needs. There are over 20,000 Town residents, seven schools, and numerous parks and recreation areas located within two miles of this heavily-used corridor. Prior to the Final Train Horn Rule, locomotive engineers were able to use discretion in sounding of the train horn in the area; however, that is no longer the case.

The Final Train Horn Rule also provides the opportunity for communities to mitigate the effects of train horn noise by establishing quiet zones. In a quiet zone, railroads are directed to cease the routine sounding their horns when approaching public highway-rail grade crossings. In order to implement a quiet zone, the increased risk that comes from silencing of train horns must either be minimized by implementing Supplemental Safety Measures or show that the lack of horns does not pose a significant risk. Train horns may still be used in emergency situations or to comply with other Federal regulations or railroad operating rules.

1.2.3. What Are the Objectives/Purposes of the Project?

The project will be developed with the following objectives:

- Provide Supplemental Safety Measures or Alternate Safety Measures in accordance with current FRA guidelines to allow for the implementation of the quiet zones.
- Restore pavement to good condition and rideability using cost effective pavement treatments which provide a minimum service life of 25 years.

1.3. What Alternatives Are Being Considered?

The following alternatives are being considered:

- Alternative 5: Traffic Channelization Device Installation with Pavement Milling & Overlay
- Alternative 5A: Traffic Channelization Device Installation with Single-Course Pavement Overlay
- Alternative 5B: Traffic Channelization Device Installation with Pavement Repair
Alternative 5: Traffic Channelization Device Installation with Pavement Milling & Overlay
This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Pavement would be milled to remove existing surface defects and provide a consistent cross slope, and overlayed with a single HMA course at Rogers Road and two HMA courses at Cloverbank Road to provide an estimated service life of 25 years. One 11-foot travel lane and 4-foot paved shoulder would be provided on Rogers Road and one 10-foot travel lane and 2-foot paved shoulder would be provided on Cloverbank Road in each travel direction. Shoulder backup material would be placed at a 2 feet width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle would destabilize at the dropoff. The open drainage system would be improved to provide a traversable cross section and underdrain would be installed where needed to address subgrade drainage deficiencies.

Alternative 5A: Traffic Channelization Device Installation with Single-Course Pavement Overlay
This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Pavement rebates will be milled at the work limits and grade crossing approaches, and overlayed with a single 1½" HMA course at both Rogers Road and Cloverbank Road to provide an estimated service life of 18 years. One 11-foot travel lane and 4-foot paved shoulder will be provided on Rogers Road and one 10-foot travel lane and 2-foot paved shoulder will be provided on Cloverbank Road in each travel direction. Shoulder backup material will be placed at a 2-foot width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle will destabilize at the dropoff. The open drainage system will be improved to provide a traversable cross section and underdrain will be installed where needed to address subgrade drainage deficiencies. While this alternative does not meet the objective to provide a minimum 25-year service life for the pavement, it is being carried forward due to budget constraints.

Alternative 5B: Traffic Channelization Device Installation with Pavement Repair
This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Minimal preventive maintenance consisting of spot pavement repairs and crack sealing would be performed at both Rogers Road and Cloverbank Road to provide an estimated service life of 5 years. Existing 10- to 11-foot travel lanes with 4- to 5-foot paved shoulders on Rogers Road and 10- to 11-foot travel lanes with 2- to 3-foot paved shoulders on Cloverbank Road would be retained. Shoulder backup material would be placed at a 2-foot width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle would destabilize at the dropoff. The open drainage system would be improved to provide a traversable cross section and underdrain would be installed where needed to address subgrade drainage deficiencies. While this alternative does not meet the objective to provide a minimum 25-year service life for the pavement, it is being carried forward due to budget constraints.

The following alternatives have been eliminated from further study:

- Alternative 0: “Null” or No Action
- Alternative 1: Crossing Closure
- Alternative 2: Four Quadrant Gate Installation
- Alternative 3: Wayside Horn Installation
- Alternative 4: Mountable Median Installation with Pavement Widening

Alternative 0: “Null” or No Action
This alternative provides for only continued maintenance of the existing roadway network. No pavement, operational, or safety improvements would be implemented and adjacent residences, schools, and park users would continue to be burdened by train horn noise. This alternative was rejected as it does not address all of the project objectives.
Alternative 1: Crossing Closure
This alternative provides for the closure of one or both of the grade crossings, on a permanent or temporary (nighttime only) basis, in order to enact the quiet zone. The approximately 9,800 vehicles which use these crossings on a daily basis would be rerouted to adjacent grade-separated crossings at Camp Road (Route 75) and Amsdell Road. This alternative was rejected as it is not feasible for these locations, due to the significant volume of traffic which uses these roads, impacts on emergency response times, and the lengthy additional travel distance which would be necessary to reroute affected traffic to Camp Road and Amsdell Road.

Alternative 2: Four Quadrant Gate Installation
This alternative provides for the installation of supplemental gates to completely block all lanes on both sides of the tracks at the grade crossings, thus eliminating the gate runaround scenario. Four quadrant gates are effective in preventing accidents by sealing the crossing from vehicles; however, slow-moving vehicles could conceivably be trapped in the railroad zone after the gates descend. Vehicle presence detectors (VPDs) can be installed that sense the presence of slow-moving vehicles to keep the supplemental exit gate arms in the vertical position until all vehicles have cleared the track crossing area. Railroads typically have issues regarding the additional maintenance costs of four quadrant gate systems, especially maintenance of the VPDs. While this alternative is feasible, it has been eliminated from consideration due to these factors as well as substantially high initial costs estimates.

Alternative 3: Wayside Horn Installation
This alternative provides for the installation of wayside horns at the grade crossings to replace the sounding of train horns. The wayside horn is stationary at a grade crossing, designed to provide audible warning to oncoming motorists of the approach of a train. Wayside horns are mounted on poles at the crossing and emit a louder, longer and more consistent audible alarm than the conventional train horn when the train is 1/4 mile from the crossing. The Wayside horn sound is directed right toward motorists and pedestrians on the roadway. While wayside horn installation would lessen the noise impact on the surrounding area by reducing the noise footprint, it would do little to lessen the impact immediately adjacent to the crossings. Cost estimates for this alternative have not been provided by the Railroads, but are expected to be comparable to four quadrant gate installation based on available guidance. While this alternative is feasible, it has been eliminated from consideration due to limited public benefits, substantially high costs, and maintenance requirements that would likely be unfavorable to the Railroads.

Alternative 4: Mountable Median Installation with Pavement Widening
This alternative provides for the installation of 3-foot mountable concrete medians with reflective traffic channelization devices along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). The existing pavement section would be rehabilitated with full-depth widening of the traveled way and shoulders to provide a service life of 25 years. One 11'-6” travel lane (striped 11’) and 3’-0” shoulder would be provided on Rogers Road and one 11’-6” travel lane (striped 11’) and 2’-0” shoulder would be provided on Cloverbank Road in each direction adjacent to the medians. Beyond the median, pavement would transition to the existing lane and shoulder widths. Existing grade crossing surfaces would be replaced by the Railroads to accommodate the widened approach pavement. This would be done at the cost of the project and would require approximately one year to implement. While this alternative is feasible, it has been eliminated from consideration due to the substantially high costs and impact on project schedule.

Refer to section 3.2 of this report for in-depth discussion of the design criteria, non-standard features, and non-conforming features.
1.4. How Will the Alternative(s) Affect the Environment?

Refer to Chapters 3 and 4 for detailed information for the various alternatives under consideration, including any proposed mitigation measures.

Anticipated permits/certifications/coordination include:

NYS Department of Environmental Conservation (NYSDEC):
- None

NYS Department of Transportation (NYSDOT):
- None

US Army Corps of Engineers (USACE):
- None

Coordination:
- Erie County DPW Highway Division
- Federal Highway Administration
- Federal Railroad Administration
- New York State Department of Transportation
- New York Natural Heritage Program
- US Fish and Wildlife Service
- CSX Transportation
- Norfolk Southern Corp.
1.5. What Are the Costs & Schedules?

Design Approval is scheduled for August 2013, with construction beginning in fall 2013 and lasting approximately 8 months.

Exhibit 1.5-A
Project Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Occurred/Tentative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoping Approval</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Approval</td>
<td>Summer 2013</td>
</tr>
<tr>
<td>Construction Start</td>
<td>Fall 2013</td>
</tr>
<tr>
<td>Construction Complete</td>
<td>Spring 2014</td>
</tr>
</tbody>
</table>

Exhibit 1.5-B
Summary of Alternative Costs (2013)

<table>
<thead>
<tr>
<th>Category</th>
<th>Alternative 2</th>
<th>Alternative 4</th>
<th>Alternative 5</th>
<th>Alternative 5A</th>
<th>Alternative 5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Costs</td>
<td>Bridge</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>$15,000</td>
<td>$328,000</td>
<td>$250,500</td>
<td>$214,000</td>
</tr>
<tr>
<td></td>
<td>Railroad</td>
<td>$2,568,000</td>
<td>$340,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Incidents (10%)</td>
<td></td>
<td>$258,000</td>
<td>$67,000</td>
<td>$25,000</td>
<td>$22,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$22,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$2,841,000</td>
<td>$735,000</td>
<td>$275,500</td>
<td>$236,000</td>
</tr>
<tr>
<td>Contingency (10%)</td>
<td></td>
<td>$426,000</td>
<td>$74,000</td>
<td>$28,000</td>
<td>$24,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$24,000</td>
<td>$17,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$3,267,000</td>
<td>$809,000</td>
<td>$303,500</td>
<td>$260,000</td>
</tr>
<tr>
<td>Potential Field Change Order (4%)</td>
<td></td>
<td>$160,000</td>
<td>$88,000</td>
<td>$14,000</td>
<td>$13,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$3,427,000</td>
<td>$897,000</td>
<td>$317,500</td>
<td>$273,000</td>
</tr>
<tr>
<td>Mobilization (4% max)</td>
<td></td>
<td>$137,000</td>
<td>$36,000</td>
<td>$12,500</td>
<td>$11,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>$3,564,000</td>
<td>$933,000</td>
<td>$330,000</td>
<td>$284,000</td>
</tr>
<tr>
<td>Construction Inspection (Town)</td>
<td></td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW Acquisition Costs</td>
<td></td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td></td>
<td>$3,564,000</td>
<td>$933,000</td>
<td>$330,000</td>
<td>$284,000</td>
</tr>
</tbody>
</table>

Notes:
1. The potential cost increase due to unknown or un-tabulated items.
2. NYSDOT recommended standard contingencies: 25% Scoping stage, 15% Design Approval stage, 5% Advanced Detail Plans stage.
3. NYSDOT recommended budget for changes in field conditions.
4. Construction costs for Alternative 2 are based upon estimates provided by the Railroads in 2010 with 4% annual adjustment.

1.6. Which Alternative Is Preferred?

The feasible and prudent alternative that best meets the project objectives is Alternative 5A.
1.7. What are the Opportunities for Public Involvement?

The Town of Hamburg is the project sponsor, as well as the SEQR Lead Agency, and is responsible for selection of the preferred alternative. The preferred alternative was selected after coordination with regulatory agencies and project stakeholders including:

- New York State Department of Transportation
- Erie County DPW Highway Division
- CSX Transportation and Norfolk Southern Corp.
- Residents and businesses adjacent to the project

A Public Information Meeting on the project was held on March 1, 2006 at the Town Hall. Representatives from the Town, CSX Transportation, Norfolk Southern, and Federal Railroad Administration were in attendance. Updates regarding the project have been given at various Town Board meetings, on the Town website, and through an e-mail contact list of interested residents.

The anticipated public involvement schedule is included in Exhibit 1.7.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Occurred/Tentative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Information Meeting</td>
<td>March 1, 2006</td>
</tr>
<tr>
<td>In-house Scoping Meeting</td>
<td>March 25, 2013</td>
</tr>
<tr>
<td>Current Project Letting</td>
<td>Fall 2013</td>
</tr>
</tbody>
</table>

For additional project information, or to provide your thoughts, you can contact the Town Engineer’s Office:

- telephone: (716) 649-6111 x2350
- e-mail: engineering@townofhamburgny.com
- Mailing Address:
 6100 South Park Avenue
 Hamburg, New York 14075

Please identify this project as Rogers Road and Cloverbank Road Railroad Quiet Zones and include the six digit Project Identification Number (PIN 5759.70) in all correspondence and when requesting additional information.

All comments received by the Town Engineer during the comment phase have been included in Appendix G. The deadline for submitting comments on the Draft Design Report was July 22, 2013.

The remainder of this report is a detailed technical evaluation of the existing conditions, the proposed alternatives, the impacts of the alternatives, copies of technical reports and plans and other supporting information.
CHAPTER 2 – PROJECT CONTEXT: HISTORY, TRANSPORTATION PLANS, CONDITIONS AND NEEDS

This chapter addresses the history and existing context of the project site, including the existing conditions, deficiencies, and needs for the subject study area.

2.1. Project History

The project was initiated by the Town of Hamburg to address the quality of life of the residents, students, and park users near the Rogers Road and Cloverbank Road crossings. The Town began scoping of the project in 2005 and held a Public Meeting on March 1, 2006. Attendees included Town, County, NYSDOT, and Railroad representatives. The project was initially intended to be funded by Town sources; however, significantly higher costs than originally anticipated forced the project to be delayed until a suitable alternative and funding could be identified. The Town received $475,000 in Section 125 funding under the Omnibus Appropriations Act of 2009 as well as $50,000 in New York State Legislative Initiative funding. An Initial Project Proposal (IPP) was prepared for the project by the Town of Hamburg and approved on May 17, 2012. The project was programmed by NYSDOT and is included in the Greater Buffalo-Niagara Regional Transportation Council (GBNRTC) Transportation Improvement Program 2011-2015.

2.2. Transportation Plans and Land Use

2.2.1. Local Plans for the Project Area

2.2.1.1. Local Master Plan:
Improvements along Rogers Road and Cloverbank Road are consistent with the 2007 *Town of Hamburg Comprehensive Plan Update*. This project does not preclude future development plans, as it would maintain existing capacity and access. There are no approved public or private developments planned within the project limits that will affect vehicular, bicyclist, or pedestrian traffic.

2.2.1.2. Local Private Development Plans:
There are no approved public or private developments planned within the project limits that will affect vehicular, bicyclist, or pedestrian traffic.

2.2.2. Transportation Corridor

2.2.2.1. Importance of the Project Route Segment:
Rogers Road (C.R. 464) is a heavily traveled urban collector linking Southwestern Boulevard (US Route 20) with Lake Shore Road (NY Route 5). Cloverbank Road is a Town road that links the residential area between the railroads and Lake Shore Road to Rogers Road and connecting routes. The proposed quiet zones cover a 4.3 mile length of the CSX Transportation (CSXT) and Norfolk Southern (NS) railroad tracks which traverse the Town from north to south. There are approximately 20,000 Town residents who live within hearing range of these railroad tracks.

2.2.2.2. Alternate Routes:
There are no suitable alternative routes on the existing roadway network with excess capacity to receive a diversion of existing traffic or new traffic generated by future development.

2.2.2.3. Corridor Deficiencies and Needs:
There are no highway capacity concerns along either Rogers Road or Cloverbank Road. Both roadways appear to operate at acceptable levels of service with minimal delays.
2.2.2.4. Transportation Plans:

This project is on the Greater Buffalo-Niagara Regional Transportation Council (GBNRTC) 2011-2014 Transportation Improvement Program (TIP).

The GBNRTC 2035 Long Range Transportation Plan Update (LRTP) was reviewed for consistency with the project needs and objectives. Some of the goals listed in the LRTP include:

- Protect and enhance the environment, improve quality of life, and promote consistency between transportation improvements and State and local planned growth patterns.
- Enhance integration and connectivity of the transportation system, across and between modes for people and freight.
- Emphasize the preservation of the existing transportation system.

2.2.2.5. Abutting Highway Segments and Future Plans for Abutting Highway Segments:

The abutting segments of Rogers Road and Cloverbank Road are similar in character to that of the project improvement area. Travel lane and shoulder widths, posted speed limits, and clear zones are consistent with those within the project limits.

Erie County DPW Highway Division has programmed a locally funded project to rehabilitate Rogers Road from Southwestern Boulevard to Lake Shore Road. Construction is scheduled for completion by mid-summer 2013. A single-course mill and overlay will take place from approximately 150 feet north of the CSXT grade crossing and extend to Lake Shore Road. The segment from Southwestern Boulevard to approximately 150 feet from the NS grade crossing will receive a two-course mill and overlay. The project is being done in part due to the implementation of the quiet zone improvements. The Town of Hamburg intends to take over ownership and maintenance jurisdiction of this segment upon completion of the rehabilitation work.

The Town of Hamburg has indicated that there are no plans to reconstruct or widen the abutting segments of Cloverbank Road within the next 20 years. Routine capital projects, including pavement resurfacing and drainage improvements, will be performed as conditions warrant.

2.3. Transportation Conditions, Deficiencies and Engineering Considerations

2.3.1. Operations (Traffic and Safety) & Maintenance

2.3.1.1. Functional Classification and National Highway System (NHS):

The NYSDOT functional classification of the respective roadway segments is presented in the following exhibit.

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Rogers Road</th>
<th>Cloverbank Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Classification</td>
<td>Urban Major Collector</td>
<td>Urban Local</td>
</tr>
<tr>
<td>National Highway System (NHS)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Designated Truck Access Highway¹</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Qualifying Highway</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Within 1 mile of a Qualifying Highway</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Within the 16-ft vertical clearance network</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:

2.3.1.2. Control of Access:
Access onto Rogers Road and Cloverbank Road is unrestricted within the project limits.

2.3.1.3. Traffic Control Devices:
There are no traffic signals within the project limits or within one half mile of the abutting roadway segments. Signs and delineators installed throughout the project limits are in fair condition, although some show evidence of vehicular impact and loss of reflectivity. Signs on Cloverbank Road are generally in poorer condition than Rogers Road. Advance railroad crossing warning signs and supplemental pavement markings are in poor condition and are located significantly farther from the crossings than current MUTCD standards.

2.3.1.4. Intelligent Transportation Systems (ITS):
There are no ITSs in operation or planned for the project study area.

2.3.1.5. Speeds and Delay:
Posted speed limits were obtained from field observation as well as review of the Code of the Town of Hamburg. Operating speeds were obtained using the test car (following-car) method. Speed data is presented in the following exhibit:

<table>
<thead>
<tr>
<th>Street Name</th>
<th>Posted/ Regulatory Speed</th>
<th>Average Speed</th>
<th>85th Percentile Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers Road</td>
<td>35 mph</td>
<td>35-40 mph</td>
<td>40 mph</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td>30 mph</td>
<td>30-35 mph</td>
<td>35 mph</td>
</tr>
</tbody>
</table>

The operating speed is a single speed that reflects the majority of motorists. Rather than using an average speed, which may only accommodate half the highway motorists, transportation agencies use the internationally accepted off-peak 85th percentile speed to represent the operating speed. The 85th percentile speed is the operating speed that only 15% of the motorists exceed during off-peak hours.

2.3.1.6. Traffic Volumes:
Twenty-four-hour continuous traffic counts were obtained from NYSDOT for the roadway segments. All data from the available traffic counts was projected to the estimated time of completion (ETC) and various future scenarios. Various growth assumptions were utilized to project the two-way annual average daily traffic (AADT) and two-way design-hour volume (DHV).

Additional traffic data is included in Appendix C. Existing and future no build traffic volumes are presented in the following exhibit:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Existing (2013)</th>
<th>ETC (2014)</th>
<th>ETC+20 (2034)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADT</td>
<td>7,550</td>
<td>7,587</td>
<td>8,331</td>
</tr>
<tr>
<td>DHV</td>
<td>679</td>
<td>683</td>
<td>750</td>
</tr>
<tr>
<td>Heavy Vehicles</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADT</td>
<td>2,273</td>
<td>2,284</td>
<td>2,508</td>
</tr>
<tr>
<td>DHV</td>
<td>205</td>
<td>206</td>
<td>226</td>
</tr>
<tr>
<td>Heavy Vehicles</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Heavy vehicle percentages noted above were estimated based on facilities with similar functional classification in the Region.

2.3.1.7. Level of Service and Mobility:

The standard procedures for roadway and intersection capacity analysis are based on the Transportation Research Board’s 2000 Highway Capacity Manual (HCM). The procedures yield a level of service (LOS) as an indicator of roadway and intersection operation. LOS is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption and lost travel time. LOS ranges from “A” to “F”, with “A” describing free flow traffic operations and “F” describing operations where demand volumes exceed capacity.

LOS and capacity analysis were performed on major connecting links and intersection within the project study area. The LOS was calculated from AM and PM peak hours on order to determine delay and congestion during commuter travel periods. Roadway segment LOS data is shown in the following exhibit. Values in parentheses refer to PM volumes.

<table>
<thead>
<tr>
<th>Exhibit 2.3.1.7-A Segment LOS Summary (No Build)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
</tr>
<tr>
<td>Rogers Road</td>
</tr>
<tr>
<td>Cloverbank Road</td>
</tr>
</tbody>
</table>

Roadway segments in the project area will likely continue operating with acceptable delays until the design year approaches.

2.3.1.8. Safety Considerations, Accident History and Analysis:

The FRA accident database was queried for all grade crossings in the study area. The database returned 3 Highway-Rail Grade Crossing Accident/Incident Reports for Cloverbank Road in the past 10 years. One incident occurred on the Norfolk Southern Corp. track in December 2011 and involved the train striking a vehicle stopped on the crossing. The two other accidents occurred on the CSX tracks in 2006 and 2007. Both of which involved vehicles that crossed the tracks and struck the train. Refer to Appendix C for copies of the reports.

No Accident/Incident Reports were found in the past 10 years for the Rogers Road grade crossing.

2.3.1.9. Existing Police, Fire Protection and Ambulance Access:

No emergency service providers are located on the project corridor. Rogers Road and Cloverbank Road are serviced by the Lakeshore Volunteer Fire Company. Police services are provided by the Hamburg Police Department.

2.3.1.10. Parking Regulations and Parking Related Conditions:

There are no parking restrictions on Rogers Road or Cloverbank Road within the project study area.

2.3.1.11. Lighting:

Street lighting is provided by cobra head style light fixtures mounted on bracket arms attached to the existing wood utility poles. There are no known plans in place to upgrade the lighting system.

2.3.1.12. Ownership and Maintenance Jurisdiction:

The ownership and maintenance responsibility of the roadway features within the project limits are shown in the following exhibit:
2.3.2. Multimodal

2.3.2.1. Pedestrians:
There are no separate provisions for pedestrians within the project limits for Rogers Road and Cloverbank Road. The only pedestrian accommodations that exist close to the project corridors are sidewalks at their respective intersection with Morgan Parkway to the west. Pedestrians are accommodated on the paved shoulder of Rogers Road and Cloverbank Road.

There are no approved plans for sidewalk extensions, trails, or other pedestrian routes within the project limits. A pedestrian generator checklist is included in Appendix C.

2.3.2.2. Bicyclists:
There are no designated bicycle routes or separate provisions for bicyclists in the project limits. The occasional bicyclist may legally use the travelway or paved shoulder.

2.3.2.3. Transit:
Public transportation services for the Town of Hamburg are provided by Niagara Frontier Transportation Authority (NFTA). Transit routes do not utilize Rogers Road or Cloverbank Road within the project limits.

2.3.2.4. Airports, Railroad Stations, and Ports:
There are no airports, railroad stations or port entrances within the project limits.

2.3.2.5. Access to Recreation Areas (Parks, Trails, Waterways, State Lands)
The entrance to William D. Williams Park is located on the south side of Rogers Road near the easterly project limit. One entrance to Lakeside Memorial Park cemetery is located on the north side of Rogers Road east of the project limit. There are no entrances to recreation areas within the Cloverbank Road project limits.

2.3.3. Infrastructure

2.3.3.1. Existing Highway Section:
Rogers Road is comprised of varying pavement widths near the railroad crossings. The total pavement width west of the CSX grade crossing is 32 feet, between the CSX and NS crossings is 29 feet and east of the NS crossing is 30 feet. Travel lane widths vary from 10 feet to 11 feet wide. There are no auxiliary lanes throughout the length of the project. Pavement cross slope varies from level to 2% and the profile is
rolling with grades up to 5.0%

Cloverbank Road also varies in width near the railroad crossings. The total pavement width west of the CSX tracks is 28 feet, between the CSX and NS tracks is 25 feet and east of the NS tracks is 26-1/2 feet. Cloverbank Road also has one travel lane in each direction which varies from 10 feet to 11 feet wide. Pavement cross slope varies from level to 5% and the profile is rolling with grades up to 7.0%

Right-of-way widths are 66 feet on Rogers Road and 49-1/2 feet on Cloverbank Road. The widths were determined from record plans and acquisition maps provided by Erie County for Rogers Road and tax maps for the Town of Hamburg for Cloverbank Road.

Refer to Section 2.3.3.10 for discussion regarding existing grade crossings.

2.3.3.2. Geometric Design Elements Not Meeting 2R/3R or Bridge Rehabilitation Standards:
This section compares the existing geometric elements with the minimum standards used to make capital infrastructure improvements. This section helps ensure the objectives and feasible alternatives consider key deficiencies.

2.3.3.2.(1) Critical Design Elements:
There are no non-standard features based on the current NYSDOT 2R/3R Standards. The geometric features of the subject roadways were evaluated in accordance with design standards set forth in the HDM. The lane and shoulder width, grades, horizontal and vertical alignments, superelevation, sight distance, cross slope, clearances, and rollover on Rogers Road and Cloverbank Road appear to coincide with the safe operating and regulatory speeds of the facilities.

2.3.3.2.(2) Other Controlling Parameters:
The following existing nonconforming features were determined based on the current NYSDOT 2R/3R Standard:

- Cross slope on Cloverbank Road is generally level to superelevated (up 2%) rather than normal crown in the eastbound travel lane. This impacts positive drainage from the travel lane, which may lead to icing conditions and accelerate pavement deterioration.
- All grade crossing approaches on Cloverbank Road are profile deficient or “humped.” Ideally, the profile of the roadway approach should be no more than 3 inches above or below the top of at a distance of 30 feet from the outside rail. This ensures a smooth transition that eliminates bottoming out of low clearance vehicles and minimizes impact forces on the crossing surface. The west approach at the CSX crossing is particularly problematic, with grades in excess of 21 inches from level. The NS crossing is not as severe, with grades approximately 13 inches from level on both approaches.
- Advance railroad crossing warning signs and supplemental pavement markings are located significantly farther from the crossings than current MUTCD standards.

2.3.3.3. Pavement and Shoulders:
Record plans for Rogers Road were provided by Erie County DPW Highway Division. Rogers Road was constructed by two separate projects between 1957 and 1962. The pavement from sta. 13+50 to 22+00 was reconstructed and the crossing approaches elevated by PSC Case no. 17313 in 1957. The abutting roadway segments were reconstructed in 1962 to a width of 30± feet with approximately 11-foot travel lanes. The pavement section was constructed with 2-1/2 inch asphalt concrete course, a 4-inch bituminous macadam course, a 12-inch subbase course and surface dusting with fine aggregate. This is consistent with the depths obtained from pavement cores taken in the travel lane and shoulder.

No record plans are available for Cloverbank Road. Based on information obtained from the pavement cores and soil borings, the pavement section consists of approximately 15-1/2 inches of asphalt and 15 inches of subbase.
Existing pavement conditions were observed by Erdman Anthony during a site visit on August 10, 2012 and again on June 21, 2013. The pavement and shoulders on Rogers Road are in good condition and show few signs of rutting, longitudinal cracking, or other deterioration. The roadway approaches are constructed on an embankment in excess of five feet from the surrounding terrain. Given these conditions, it appears that the existing pavement structure is sufficient and subgrade soils are not frost susceptible.

Pavement conditions on Cloverbank Road are fair to poor, with significant wheelpath cracking, edge cracking, and wheelpath rutting. These types of distresses are indicative of poor subgrade support, frost action, inadequate drainage, insufficient pavement thickness, and poor lateral (shoulder) support. The roadbed is in a shallow cut section at the grade crossing approaches, which suggests that the underlying soils are poorly draining and susceptible to frost heave. This is confirmed by wet conditions encountered in the underlying subbase and subgrade materials during the soil borings. The pavement section itself is sufficiently thick given adequate drainage conditions.

Refer to Appendix D for additional information regarding pavement.

2.3.3.4. Drainage Systems:

Drainage on Rogers Road is mainly accommodated by the perched roadway embankment, as well as shallow roadside and a closed drainage system near the south end. A 24-inch CMP culvert crosses the road and drains to the ditch beyond the southerly project limit. This culvert carries roadside drainage to a 12-inch PVC sewer that appears to continue northeasterly through Lakeside memorial Park.

Cloverbank Road drainage is accommodated by a combination of open and closed drainage systems. A 24-inch CMP culvert carrying railroad drainage crosses Cloverbank Road between the CSX and NS tracks. The inlet of this culvert could not be located in the field. A 15-inch CMP culvert crosses Cloverbank Road east of the NS tracks. This culvert carries roadside drainage as well as trackside drainage from the NS right-of-way and discharges to a trackside ditch that flows northeasterly.

The Town has indicated that there are no known problems with the existing drainage system within the project limits.

2.3.3.5. Geotechnical:

A subsurface exploration program consisting of soil borings with split-spoon sampling and field California Bearing Ratio testing was performed. The results of the exploration program indicate that soils within the project limits of Rogers Road are generally moist clayey Silt or crushed stone that provide adequate subgrade support of the roadway. Cloverbank Road generally consists of fine/course Sand which provides adequate support of the roadway, given adequate drainage conditions. Based on pavement distresses noted previously as well as soil exploration, subsurface drainage is inadequate and is leading to premature pavement deterioration.

At this time, there are no special geotechnical concerns with soils or rock slopes within the project area. Refer to Appendix D for additional geotechnical information.

2.3.3.6. Structures:

There are no existing bridges or large culverts within the project limits.

2.3.3.7. Hydraulics of Bridges and Culverts:

There are no existing bridges or culverts over waterways within the project limits.

2.3.3.8. Guide Railing, Median Barriers and Impact Attenuators:

The existing guide railing on Rogers Road is generally in fair condition. There is no guide railing on Cloverbank Road. Exhibit 2.3.3.8 notes the existing guide railing along the project corridor.
Exhibit 2.3.3.8
Existing Guide Railing, Median Barriers and Impact Attenuators

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Length (ft)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Beam</td>
<td>15+47, RT</td>
<td>147</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>15+75, LT</td>
<td>123</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>15+31, LT</td>
<td>52</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>15+34, RT</td>
<td>39</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>18+60, RT</td>
<td>79</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>18+61, LT</td>
<td>80</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>20+05, LT</td>
<td>186</td>
<td>Fair</td>
</tr>
<tr>
<td>W-Beam</td>
<td>20+12, RT</td>
<td>85</td>
<td>Fair</td>
</tr>
</tbody>
</table>

There are no median barriers or impact attenuators within the project limits.

2.3.3.9. Utilities:

Utility companies and municipal agencies were contacted to determine the location of any existing underground and overhead facilities. The following utilities are present in the vicinity of the project limits:

- Overhead electric transmission and distribution lines owned by National Grid (private)
- Overhead and underground telephone lines owned by Verizon (private)
- Overhead and underground cable television lines owned by Time Warner Cable (private)
- Overhead and underground railroad communication and signal lines owned by CSXT and NS (private)
- Underground fiber optic lines parallel to the CSXT right-of-way owned by AT&T and Sprint (private)
- Underground gas transmission and distribution lines owned by National Fuel Gas (private)
- Underground water transmission and distribution lines owned by Erie County Water Authority (public)
- Underground sanitary sewers owned by Erie County (public)

A detailed evaluation of the existing utilities in the project limits will be prepared as the design progresses.

2.3.3.10. Railroad Facilities:

The following grade crossings are located within the limits of the proposed quiet Zones:

Exhibit 2.3.3.10
Railroad Grade Crossings

<table>
<thead>
<tr>
<th>Inventory No.</th>
<th>Road Name</th>
<th>Railroad</th>
<th>Type of Crossing</th>
<th>No. of Tracks</th>
<th>Warning Devices</th>
<th>Trains per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>519502A</td>
<td>Rogers Road</td>
<td>CSXT</td>
<td>Public</td>
<td>3</td>
<td>FLG</td>
<td>86</td>
</tr>
<tr>
<td>471716C</td>
<td>Rogers Road</td>
<td>NS</td>
<td>Public</td>
<td>1</td>
<td>FLG</td>
<td>14</td>
</tr>
<tr>
<td>519501T</td>
<td>Cloverbank Road</td>
<td>CSXT</td>
<td>Public</td>
<td>3</td>
<td>FLG</td>
<td>86</td>
</tr>
<tr>
<td>471717J</td>
<td>Cloverbank Road</td>
<td>NS</td>
<td>Public</td>
<td>1</td>
<td>FLG</td>
<td>14</td>
</tr>
</tbody>
</table>

All grade crossing surfaces are in good condition. Surfaces on CSXT’s crossing are normal duty with rubber rail interfaces, timber headers, and asphalt pavement on a timber track structure. CSXT has indicated that the surfaces at Rogers Road and Cloverbank Road were installed within the past decade and there are no immediate plans to replace them. CSXT also indicated that the average service life of a
grade crossing surface on a high tonnage line such as the Lake Shore Subdivision is approximately 12-15 years.

Norfolk Southern's crossings are also normal duty with rubber rail interfaces and asphalt paving on a timber track structure. NS indicated that the surfaces at both roadways were replaced within the past five years and there are no immediate plans to replace them. NS did not provide an expected service life for the crossings on the Lake Erie District.

All grade crossings have active warning devices consisting of flashing lights, gates, and bells. NYSDOT has programmed four projects (PINs 5933.53.321, 5933.24.321, 5933.26.321, and 5933.27.321) to upgrade the warning devices at all grade crossings within the project limits. Improvements will consist of replacement of existing devices with new 12-inch LED flashing lights, gate mechanisms, gate arms, electronic bell, signal mast/stanchions, and foundations. Existing grade crossing surfaces were planned to lengthened as needed to accommodate the wider roadway approaches proposed by the quiet zone project; however, that is no longer the case given budget constraints. The existing signal enclosures, predictors, and crossing approach circuitry will not be replaced. The project was originally programmed for construction in 2008, but has been delayed to coordinate efforts with the Town's quiet zone project. The project is currently anticipated to be constructed in late 2013 or early 2014.

2.3.4. Landscape and Environmental Enhancement Opportunities

2.3.4.1. Landscape:

The landscape of the surrounding area is formed on a level terrain with limited land use density. The project site is located in an area with residential, commercial, and recreational uses. The periphery contains limited open spaces.

2.3.4.1.(1) Terrain:

According to properties described in the HDM, the terrain of the project improvement area is level. Highway sight distances, as governed by both horizontal and vertical restrictions, are generally long or could be made to be so without construction difficulty or major expenses.

2.3.4.1.(2) Unusual Weather Conditions:

The climate is typical of the region and consists of warm to hot summers and cold winters with moderate to heavy snowfall. Average annual precipitation is 38.5 inches. On average there are 137 days annually with measurable frost. The open spaces adjacent to both roadways likely result in localized blowing snow conditions, although no problem areas have been brought to attention by the Town.

2.3.4.1.(3) Visual Resource Inventory:

The visual environment does not contain any known visually sensitive receptors including significant scenic views, State/National Register of Historic Places structures, buildings or district, nor unusual land forms.

2.3.4.2. Opportunities for Environmental Improvements:

No practical opportunities for environmental enhancements within the project area have been identified to date. Opportunities for improvements in accordance with NYSDOT's Environmental Initiative should be examined as the project progresses. These are actions to enhance the natural and manmade environment above and beyond the required project mitigation measures. They may include features that provide the opportunity for enhancement by local governments or other agencies or organizations as betterments. Examples include: fishing access, boat and canoe launch sites, development of pocket parks, habitat improvements, and enhanced wetlands.

2.3.5. Miscellaneous:

None.
CHAPTER 3 – ALTERNATIVES

This chapter discusses the alternatives considered and examines the engineering aspects for all feasible alternatives to address the project objectives outlined in Chapter 1 of this report.

3.1. Alternatives Considered and Eliminated from Further Study

Project alternatives were developed to meet the project objectives using the design criteria in Section 3.2.3.2 of this report. The following alternatives were considered and have been eliminated from further study:

- Alternative 0: “Null” or No Action
- Alternative 1: Crossing Closure
- Alternative 2: Four Quadrant Gate Installation
- Alternative 3: Wayside Horn Installation
- Alternative 4: Mountable Median Installation with Pavement Widening

Alternative 0: “Null” or No Action
This alternative provides for only continued maintenance of the existing roadway network. No pavement, operational, or safety improvements would be implemented and adjacent residences, schools, and park users would continue to be burdened by train horn noise. This alternative was rejected as it does not address all of the project objectives.

Alternative 1: Crossing Closure
This alternative provides for the closure of one or both of the grade crossings, on a permanent or temporary (nighttime only) basis, in order to enact the quiet zone. The approximately 9,800 vehicles which use these crossings on a daily basis would be rerouted to adjacent grade-separated crossings at Camp Road (Route 75) and Amsdell Road. This alternative was rejected as it is not feasible for these locations, due to the significant volume of traffic which uses these roads, impacts on emergency response times, and the lengthy additional travel distance which would be necessary to reroute affected traffic to Camp Road and Amsdell Road.

Alternative 2: Four Quadrant Gate Installation
This alternative provides for the installation of supplemental gates to completely block all lanes on both sides of the tracks at the grade crossings, thus eliminating the gate runaround scenario. Four quadrant gates are effective in preventing accidents by sealing the crossing from vehicles; however, slow-moving vehicles could conceivably be trapped in the railroad zone after the gates descend. Vehicle presence detectors (VPDs) can be installed that sense the presence of slow-moving vehicles to keep the supplemental exit gate arms in the vertical position until all vehicles have cleared the track crossing area. Railroads typically have issues regarding the additional maintenance costs of four quadrant gate systems, especially maintenance of the VPDs. While this alternative is feasible, it has been eliminated from consideration due to these factors as well as substantially high initial costs estimates.

Alternative 3: Wayside Horn Installation
This alternative provides for the installation of wayside horns at the grade crossings to replace the sounding of train horns. The wayside horn is stationary at a grade crossing, designed to provide audible warning to oncoming motorists of the approach of a train. Wayside horns are mounted on poles at the crossing and emit a louder, longer and more consistent audible alarm than the conventional train horn when the train is 1/4 mile from the crossing. The Wayside horn sound is directed right toward motorists and pedestrians on the roadway. While wayside horn installation would lessen the noise impact on the surrounding area by reducing the noise footprint, it would do little to lessen the impact immediately adjacent to the crossings. Cost estimates for this alternative have not been provided by the Railroads, but are expected to be comparable to four quadrant gate installation based on available guidance. While this alternative is feasible, it has been eliminated from consideration due to limited public benefits, substantially high costs, and maintenance requirements that would likely be unfavorable to the Railroads.
Alternative 4: Mountable Median Installation with Pavement Widening
This alternative provides for the installation of 3-foot mountable concrete medians with reflective traffic channelization devices along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). The existing pavement section would be rehabilitated with full-depth widening of the traveled way and shoulders to provide a service life of 25 years. One 11’-6” travel lane (striped 11”) and 3’-0” shoulder would be provided on Rogers Road and one 11’-6” travel lane (striped 11”) and 2’-0” shoulder would be provided on Cloverbank Road in each direction adjacent to the medians. Beyond the median, pavement would transition to the existing lane and shoulder widths. Existing grade crossing surfaces would be replaced by the Railroads to accommodate the widened approach pavement. This would be done at the cost of the project and would require approximately one year to implement. While this alternative is feasible, it has been eliminated from consideration due to the substantially high costs and impact on project schedule.

Refer to section 3.2 of this report for in-depth discussion of the design criteria, non-standard features, and non-conforming features.

3.2. Feasible Build Alternatives

3.2.1. Description of Feasible Alternatives

Project alternatives were developed to meet the project objectives using the design criteria in Section 3.2.3.2 of this report. The following alternatives are considered feasible as they meet the project objectives outlined in Chapter 1:

- Alternative 5: Traffic Channelization Device Installation with Pavement Milling & Overlay
- Alternative 5A: Traffic Channelization Device Installation with Single-Course Pavement Overlay
- Alternative 5B: Traffic Channelization Device Installation with Pavement Repair

Alternative 5: Traffic Channelization Device Installation with Pavement Milling & Overlay
This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Pavement would be milled to remove existing surface defects and provide a consistent cross slope, and overlayed with a single HMA course at Rogers Road and two HMA courses at Cloverbank Road to provide an estimated service life of 25 years. One 11-foot travel lane and 4-foot paved shoulder would be provided on Rogers Road and one 10-foot travel lane and 2-foot paved shoulder would be provided on Cloverbank Road in each travel direction. Shoulder backup material would be placed at a 2 feet width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle would destabilize at the dropoff. The open drainage system would be improved to provide a traversable cross section and underdrain would be installed where needed to address subgrade drainage deficiencies.

Key elements of this alternative include:

Geometry
- Rehabilitation of the roadway generally on existing alignment with an 11-foot travel lane and 4-foot shoulder in each direction for Rogers Road and 10-foot travel lane and 2-foot shoulder for Cloverbank Road.
- The cross slope of the pavement will be constructed to 2% and the maximum rollover will be 8%.
- Paved shoulder width at the Cloverbank Road grade crossings with both Railroads will be limited to 3 feet by the existing surfaces.

Operational
- The standard travel lanes and shoulder widths maintain the level of service along the corridor.

Control of Access
- Access control along the corridor will generally remain unchanged.
- Access to the power line access driveways on both roads will be limited to one way in and out by the traffic separators, unless they are mounted by equipment or temporarily removed.
Right-of-Way
- All work necessary to construct the project will be contained inside the existing 66-foot wide ROW on Rogers Road and 49.5-foot wide ROW on Cloverbank Road. Nonessential work will require temporary work releases.

Environmental
- There are no significant environmental concerns.

Cost
- Construction cost of this alternative is $0.33M.

Project Goals
- This improvement meets the overall objectives of providing Supplemental Safety Measures in accordance with current FRA guidelines for implementation of quiet zones and restoring the pavement to good condition for an estimated service life of 25 years.

The following alternatives provide generally the same improvements as Alternative 5, with variations on pavement treatments to allow the project to meet funding constraints.

Alternative 5A: Traffic Channelization Device Installation with Single-Course Pavement Overlay

This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Pavement rebates will be milled at the work limits and grade crossing approaches, and overlayed with a single 1½” HMA course at both Rogers Road and Cloverbank Road to provide an estimated service life of 18 years. One 11-foot travel lane and 4-foot paved shoulder will be provided on Rogers Road and one 10-foot travel lane and 2-foot paved shoulder will be provided on Cloverbank Road in each travel direction. Shoulder backup material will be placed at a 2-foot width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle will destabilize at the dropoff. The open drainage system will be improved to provide a traversable cross section and underdrain will be installed where needed to address subgrade drainage deficiencies. While this alternative does not meet the objective to provide a minimum 25-year service life for the pavement, it is being carried forward due to budget constraints.

Key elements of this alternative include:

Geometry
- Rehabilitation of the roadway generally on existing alignment with an 11-foot travel lane and 4-foot shoulder in each direction for Rogers Road and 10-foot travel lane and 2-foot shoulder for Cloverbank Road.
- The cross slope of the pavement will be constructed to 2% and the maximum rollover will be 8%.
- Paved shoulder width at the Cloverbank Road grade crossings with both Railroads will be limited to 3 feet by the existing surfaces.

Operational
- The standard travel lanes and shoulder widths maintain the level of service along the corridor.

Control of Access
- Access control along the corridor will generally remain unchanged.
- Access to the power line access driveways on both roads will be limited to one way in and out by the traffic separators, unless they are mounted by equipment or temporarily removed.

Right-of-Way
- All work necessary to construct the project will be contained inside the existing 66-foot wide ROW on Rogers Road and 49.5-foot wide ROW on Cloverbank Road. Nonessential work will require temporary work releases.

Environmental
- There are no significant environmental concerns.

Cost
- Construction cost of this alternative is $0.28M.

Project Goals
- This improvement meets the overall objectives of providing Supplemental Safety Measures in accordance with current FRA guidelines for implementation of quiet zones, but provides less than the desired estimated service life of 25 years for pavement.
Alternative 5B: Traffic Channelization Device Installation with Pavement Repair

This alternative provides for the installation of 9-inch-wide reflective traffic channelization devices with integral curbing along the centerline of both roadways for a length of 100 feet from each crossing gate arm as Supplemental Safety Measures (SSM). Minimal preventive maintenance consisting of spot pavement repairs and crack sealing would be performed at both Rogers Road and Cloverbank Road to provide an estimated service life of 5 years. Existing 10- to 11-foot travel lanes with 4- to 5-foot paved shoulders on Rogers Road and 10- to 11-foot travel lanes with 2- to 3-foot paved shoulders on Cloverbank Road would be retained. Shoulder backup material would be placed at a 2-foot width beyond the paved shoulders to provide additional buffer space for vehicle maneuverability and minimize the chance that errant vehicle would destabilize at the dropoff. The open drainage system would be improved to provide a traversable cross section and underdrain would be installed where needed to address subgrade drainage deficiencies. While this alternative does not meet the objective to provide a minimum 25-year service life for the pavement, it is being carried forward due to budget constraints.

Key elements of this alternative include:

Geometry
- Minimal pavement repairs to maintain Existing 10- to 11-foot travel lanes with 4- to 5-foot paved shoulders on Rogers Road and 10- to 11-foot travel lanes with 2- to 3-foot paved shoulders on Cloverbank Road
- The existing cross slope of the pavement will remain greater than 3% max.
- Paved shoulder width at the Cloverbank Road grade crossings with both Railroads will be limited to 3 feet by the existing surfaces.

Operational
- The standard travel lanes and shoulder widths maintain the level of service along the corridor.

Control of Access
- Access control along the corridor will generally remain unchanged.
- Access to the power line access driveways on both roads will be limited to one way in and out by the traffic separators, unless they are mounted by equipment or temporarily removed.

Right-of-Way
- All work necessary to construct the project will be contained inside the existing 66-foot wide ROW on Rogers Road and 49.5-foot wide ROW on Cloverbank Road. Nonessential work will require temporary work releases.

Environmental
- There are no significant environmental concerns.

Cost
- Construction cost of this alternative is $0.20M.

Project Goals
- This improvement meets the overall objectives of providing Supplemental Safety Measures in accordance with current FRA guidelines for implementation of quiet zones, but provides less than the desired estimated service life of 25 years for pavement.
Exhibit 1.5-B
Summary of Alternative Costs (2013)

<table>
<thead>
<tr>
<th>Category</th>
<th>Alternative</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>5A</th>
<th>5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Costs</td>
<td>Bridge</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>$15,000</td>
<td>$328,000</td>
<td>$250,500</td>
<td>$214,000</td>
<td>$150,000</td>
</tr>
<tr>
<td></td>
<td>Railroad</td>
<td>$2,568,000</td>
<td>$340,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Incidents1 (10%)</td>
<td>$258,000</td>
<td>$67,000</td>
<td>$25,000</td>
<td>$22,000</td>
<td>$15,000</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>$2,841,000</td>
<td>$735,000</td>
<td>$275,500</td>
<td>$236,000</td>
<td>$165,000</td>
</tr>
<tr>
<td></td>
<td>Contingency2 (10%)</td>
<td>$426,000</td>
<td>$74,000</td>
<td>$28,000</td>
<td>$24,000</td>
<td>$17,000</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>$3,267,000</td>
<td>$809,000</td>
<td>$303,500</td>
<td>$260,000</td>
<td>$182,000</td>
</tr>
<tr>
<td></td>
<td>Potential Field Change Order3</td>
<td>$160,000</td>
<td>$88,000</td>
<td>$14,000</td>
<td>$13,000</td>
<td>$10,000</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>$3,427,000</td>
<td>$897,000</td>
<td>$317,500</td>
<td>$273,000</td>
<td>$192,000</td>
</tr>
<tr>
<td></td>
<td>Mobilization (4% max)</td>
<td>$137,000</td>
<td>$36,000</td>
<td>$12,500</td>
<td>$11,000</td>
<td>$7,700</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>$3,564,000</td>
<td>$933,000</td>
<td>$330,000</td>
<td>$284,000</td>
<td>$199,700</td>
</tr>
<tr>
<td></td>
<td>Construction Inspection (Town)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>ROW Acquisition Costs</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td></td>
<td>$3,564,000</td>
<td>$933,000</td>
<td>$330,000</td>
<td>$284,000</td>
<td>$199,700</td>
</tr>
</tbody>
</table>

Notes:
1. The potential cost increase due to unknown or un-tabulated items.
2. NYSDOT recommended standard contingencies: 25% Scoping stage, 15% Design Approval stage, 5% Advanced Detail Plans stage.
3. NYSDOT recommended budget for changes in field conditions.
4. Construction costs for Alternative 2 are based upon estimates provided by the Railroads in 2010 with 4% annual adjustment.

3.2.2 Preferred Alternative:

Alternative 5A has been identified as the preferred alternative.

3.2.3. Design Criteria for Feasible Alternative(s)

3.2.3.1. Design Standards:

Chapter 7 of the NYSDOT *Highway Design Manual* (HDM) is the primary source for design standards. The primary work type is 3R.

3.2.3.2. Critical Design Elements:

The minimum design criteria for critical design elements serve as the basis for developing and evaluating the design alternatives and are shown in Exhibit 3.2.3.2-A through Exhibit 3.2.3.2-B. The HDM was used to establish these criteria.

The Proposed Conditions columns are reflective of Alternatives 5 and 5A. Conditions for Alternative 5B are the same as the existing conditions, since pavement improvements would be limited to preventive maintenance.
<table>
<thead>
<tr>
<th>Element</th>
<th>Standard</th>
<th>Existing Condition</th>
<th>Proposed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Design Speed</td>
<td>30 mph min, 60 mph max<sup>1</sup></td>
<td>35 mph</td>
<td>35 mph</td>
</tr>
<tr>
<td>2 Lane Width</td>
<td>10’ min travel lane</td>
<td>10-11 ft</td>
<td>11 ft</td>
</tr>
<tr>
<td>3 Shoulder Width</td>
<td>4’ min (uncurbed)</td>
<td>3-5 ft</td>
<td>4 ft</td>
</tr>
<tr>
<td>4 Bridge Roadway Width</td>
<td>28’ min width but not > than approach roadway width BM §2.3.1 Table 2-1, App. 2A Table X & R</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5 Maximum Grade</td>
<td>No min/max (uncurbed)</td>
<td>4.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>6 Horizontal Curvature</td>
<td>86’ (@ e = 4.0%)</td>
<td>2,864.79 ft @ NC</td>
<td>2,864.79 ft @ NC</td>
</tr>
<tr>
<td>7 Superelevation Rate</td>
<td>4% max</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>8 Stopping Sight Distance</td>
<td>250’ min</td>
<td>>334 ft</td>
<td>>334 ft</td>
</tr>
<tr>
<td>9 Horizontal Clearance</td>
<td>greater of shoulder width or 1.5’</td>
<td>5 ft</td>
<td>5 ft</td>
</tr>
<tr>
<td>10 Vertical Clearance</td>
<td>14’ min, 14”-6” desirable BM §2.4.1 Table 2-2 and §2.4.3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11 Pavement Cross Slope</td>
<td>1.5% min to 3% max (travel lanes)</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>12 Rollover</td>
<td>4% max between lanes 8% max at EOT; HDM §7.5.2.2 L</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>13 Structural Capacity</td>
<td>NYSDOT LRFD Specifications AASHTO HL-93 Live Load and NYSDOT Design Permit Vehicle BM §2.6.1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14 Pedestrian Accommodation</td>
<td>Complies with HDM Chapter 18 and ADAAG Shoulder</td>
<td>Shoulder</td>
<td>Shoulder</td>
</tr>
</tbody>
</table>

Notes:
1. Design Speed of 40 mph is consistent with the anticipated off-peak 85th percentile speed within the range of functional class speeds for the terrain and volume. Refer to Section 2.3.1.5, Speeds and Delays, and Appendix C of this report for additional information on speed data.
Exhibit 3.2.3.2-B
Critical Design Elements for Cloverbank Road

<table>
<thead>
<tr>
<th>PIN:</th>
<th>5759.70</th>
<th>NHS (Y/N):</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route No. & Name:</td>
<td>Cloverbank Road</td>
<td>Functional Class:</td>
<td>Urban Local</td>
</tr>
<tr>
<td>Project Type:</td>
<td>Non-freeway 3R</td>
<td>Design Class:</td>
<td>Local</td>
</tr>
<tr>
<td>% Trucks:</td>
<td>5.0%</td>
<td>Terrain:</td>
<td>Level</td>
</tr>
<tr>
<td>ADT:</td>
<td>2,284</td>
<td>Truck Access/Qualifying Hw.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Standard</th>
<th>Existing Condition</th>
<th>Proposed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Design Speed</td>
<td>20 mph min, 30 mph max<sup>1</sup></td>
<td>30 mph</td>
<td>30 mph</td>
</tr>
<tr>
<td>2 Lane Width</td>
<td>9’ min travel lane</td>
<td>10-11 ft</td>
<td>10 ft</td>
</tr>
<tr>
<td>3 Shoulder Width</td>
<td>2’ min (uncurbed), 0’ min (curbed)</td>
<td>2-3 ft</td>
<td>2 ft</td>
</tr>
<tr>
<td>4 Bridge Roadway Width</td>
<td>28’ min width but not > than approach roadway width</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5 Maximum Grade</td>
<td>No min/max (uncurbed), 0.5% des. (curbed)</td>
<td>7.0%</td>
<td>6.65%</td>
</tr>
<tr>
<td>6 Horizontal Curvature</td>
<td>42’ (@ e = 4.0%)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7 Superelevation Rate</td>
<td>4% max</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8 Stopping Sight Distance</td>
<td>200’ min</td>
<td>>200 ft</td>
<td>>200 ft</td>
</tr>
<tr>
<td>9 Horizontal Clearance</td>
<td>greater of shoulder width or 1.5’</td>
<td>3 ft</td>
<td>3 ft</td>
</tr>
<tr>
<td>10 Vertical Clearance</td>
<td>14’ min, 14’-6’ desirable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11 Pavement Cross Slope</td>
<td>1.5% min to 3% max (travel lanes), 2% min to 8% max (shoulders)</td>
<td>0-5%</td>
<td>2%</td>
</tr>
<tr>
<td>12 Rollover</td>
<td>4% max between lanes</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>13 Structural Capacity</td>
<td>NYSDOT LRFD Specifications, AASHTO HL-93 Live Load and NYSDOT Design Permit Vehicle</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14 Pedestrian Accommodation</td>
<td>Complies with HDM Chapter 18 and ADAAG Shoulder</td>
<td>Shoulder</td>
<td>Shoulder</td>
</tr>
</tbody>
</table>

Notes:
1. Design Speed of 40 mph is consistent with the anticipated off-peak 85th percentile speed within the range of functional class speeds for the terrain and volume. Refer to Section 2.3.1.5, Speeds and Delays, and Appendix C of this report for additional information on speed data.
3.2.3.3. Other Design Parameters:

Other important engineering standards and normally accepted practices upon which the alternatives are based are included in the following exhibits.

<table>
<thead>
<tr>
<th>Exhibit 3.2.3.3-A</th>
<th>Other Design Parameters: Design Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Design Vehicle</td>
</tr>
<tr>
<td>Rogers Road</td>
<td>SU, HDM §5.7.1.1</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td>SU, HDM §5.7.1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhibit 3.2.3.3-B</th>
<th>Other Design Parameters: Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Criteria</td>
</tr>
<tr>
<td>Rogers Road</td>
<td></td>
</tr>
<tr>
<td>Level of Service (non-interstate)</td>
<td>D min, C desirable; HDM §5.2.2.1</td>
</tr>
<tr>
<td>Design Storm:</td>
<td>Culverts =</td>
</tr>
<tr>
<td></td>
<td>Storm Drainage System =</td>
</tr>
<tr>
<td></td>
<td>Ditches =</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td></td>
</tr>
<tr>
<td>Level of Service (non-interstate)</td>
<td>D min, C desirable; HDM §5.2.2.1</td>
</tr>
<tr>
<td>Design Storm:</td>
<td>Culverts =</td>
</tr>
<tr>
<td></td>
<td>Storm Drainage System =</td>
</tr>
<tr>
<td></td>
<td>Ditches =</td>
</tr>
</tbody>
</table>

3.3. Engineering Considerations

3.3.1. Operations (Traffic and Safety) & Maintenance

3.3.1.1. Functional Classification and National Highway System:

The project will not affect the functional classification of any existing roadways in the area. Rogers Road will remain functionally classified as an Urban Collector (FC-17) and will not be on the NHS. Likewise, Cloverbank Road will remain a Local Road (FC-19).

3.3.1.2. Control of Access:

Vehicular access onto Rogers Road and Cloverbank Road will not be restricted by ordinance or by construction of the approach medians. All commercial and residential access points will be evaluated for their conformity to standardized entrances to highways and will be modified to accommodate the design vehicle accordingly.

The access points to National Grid’s transmission line right-of-way will be blocked at both roadways by construction of the medians and channelization devices. There should be sufficient pavement width to allow National Grid to maneuver around the ends of the medians with maintenance equipment, so the project should not hinder their access. Coordination with National Grid will take place during the final design phase.

3.3.1.3. Traffic Control Devices:

All existing signs within the work limits will be inspected for condition and evaluated for conformance with current standards during final design. All proposed signs and pavement markings should conform to current standards outlined in the MUTCD.

Supplemental Safety Measures (SSMs) in the form of reflective traffic channelization devices (centerline traffic separator system) with integral curb will be installed along the centerline of both roadways for a
length of 100 feet from each crossing gate arm to comply with the requirements of the Notice of Intent to Create Railroad Quiet Zones. Approach pavement markings and signs in accordance with the MUTCD and NYS Supplement will be installed at all approaches.

3.3.1.4. Intelligent Transportation Systems (ITS):

No ITS measures are proposed.

3.3.1.5. Speeds and Delay:

Travel time estimates have not been performed since the feasible alternatives are not expected to adversely affect the capacity of the existing roadway network. The posted 35-mph speed limit on Rogers Road and 30-mph speed limit on Cloverbank Road will not be affected by the project.

3.3.1.6. Traffic Data Forecast:

Traffic volumes for the build condition are not expected to vary significantly from the no-build condition presented in Exhibit 2.3.1.6.

3.3.1.7. Level of Service and Mobility

3.3.1.7. (1) At Project Completion & Design Year:

Design year traffic volumes are expected to be the same as the future no-build design year volumes presented in Chapter II. The improvements occurring as a result of this project are not expected to draw significant additional traffic to these routes, since the number and width of travel lanes will not be increased, the roadway geometry will not be improved substantially, and the development potential in the area is limited.

Roadway design year LOS for Rogers Road and Cloverbank Road is expected to be the same as future no-build design year traffic volumes presented in Chapter II. The LOS was calculated for AM and PM peak hours in order to determine delay and congestion during commuter travel periods. Roadway segment LOS data is shown in the following exhibit. Values in parentheses refer to PM volumes.

![Exhibit 2.3.1.7-A](image)

<table>
<thead>
<tr>
<th>Segment</th>
<th>ETC</th>
<th>ETC+10</th>
<th>ETC+20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers Road</td>
<td>B (B)</td>
<td>B (B)</td>
<td>B (B)</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td>A (A)</td>
<td>A (A)</td>
<td>A (A)</td>
</tr>
</tbody>
</table>

The Rogers Road and Cloverbank Road segments within the project limits are projected to continue operating with acceptable delays through the design year.

Refer to Section 3.3.1.8 for further discussion regarding safety considerations.

3.3.1.7.(2) Work Zone Safety & Mobility:

The traffic control scheme for both roadways may vary depending on the timing of the NYSDOT crossing signal project. Ideally, both projects would be constructed at essentially the same with work staged to allow one roadway to remain fully open while work progresses on the other.

If the schedule of the NYSDOT project is delayed, traffic on Rogers Road and Cloverbank Road will be maintained on existing or temporary roadway surfaces for the duration of construction. No detours or long-term lane closures are anticipated to be required to construct the new roadway segments. Traffic will be controlled with short-term, daily lane closures and flagging operations. In some cases, short-term driveway closures or restrictions to vehicle size may be required to complete construction along the
corridor. Work on the railroad may require short term road closure. A posted detour is not expected. Access to the driveways in the vicinity of the crossings will be maintained at all times during construction.

Details pertaining to work zone traffic control during construction – including recommended staging and sequencing of construction – will be developed during final design of the project. The proposed traffic control scheme on Rogers Road may require review and approval from Erie County DPW as well as a Highway Work Permit for Non-Utility Work. Due to the close proximity to residential homes and the ability to maintain traffic with acceptable delays during daylight hours, nighttime construction will not be utilized.

Any staging schemes or access restrictions should be coordinated with emergency service providers, transit agencies, and school districts during the final design phase as well as construction. At a minimum, coordination should take place with:

- Lakeshore Volunteer Fire Company
- Hamburg Police Department
- Town of Hamburg Public Safety Dispatch Office
- Frontier Central School District

The project does not include work on an Interstate located within a designated Transportation Management Area (TMA); therefore, further coordination for Significant Projects as defined in 23 CFR 630.1010 is not necessary.

3.3.1.8. Safety Considerations, Accident History and Analysis:
Desirable clear zones widths will be provided where right-of-way and environmental constraints allow. Where minimum clear zones cannot be provided, any obstructions will be appropriately shielded. The final determination of the design clear zone width will be made during the final design phase.

3.3.1.9. Impacts on Police, Fire Protection and Ambulance Access:
The project will have minimal impact on emergency services providers. The proposed collapsible reflective channelization devices will not impede emergency access to the grade crossings.

During construction, the work zone traffic control scheme may negatively affect response times for short periods. Refer to Section 3.3.1.7(2) for a discussion of the anticipated impacts during construction.

3.3.1.10. Parking Regulations and Parking Related Issues:
No changes in parking restrictions are proposed by the project.

3.3.1.11. Lighting:
Any existing bracket arms with cobra head fixtures mounted to utility poles impacted by construction will be relocated. Additional lighting along the project corridor does not appear to be warranted.

3.3.1.12. Ownership and Maintenance Jurisdiction:
Ownership and maintenance jurisdiction of Rogers Road will be transferred from Erie County to the Town of Hamburg upon completion of the improvements. Rogers Road will become a Town highway, which will also include the existing County stormwater drainage system within the highway right-of-way.

Ownership and maintenance responsibilities for Cloverbank Road, including any improvements, will remain as described in Section 2.3.1.12 of this report.

3.3.1.13. Constructability Review:
The project work elements are expected to be routine, the work area should not be overly-confining or restrictive, and the schedule is not expected to be compressed. A final constructability review should be performed by the proposed construction inspection staff during the final design phase of the project.
3.3.2. Multimodal

3.3.2.1. Pedestrians:
No separate pedestrian accommodations will be provided, due to the lack of pedestrian generator density and stakeholder interest. Pedestrians will be accommodated on the proposed paved shoulders and travelways. Refer to Appendix B for the Pedestrian Generator Checklist.

3.3.2.2. Bicyclists:
No separate provisions to accommodate bicyclists are proposed. The occasional bicyclist can be accommodated on the proposed paved shoulders or travelways.

3.3.2.3. Transit:
There are no transit routes within the project limits.

3.3.2.4. Airports, Railroad Stations, and Ports:
There are no airports, railroad stations or port entrances within the project limits.

3.3.2.5. Access to Recreation Areas (Parks, Trails, Waterways, and State Lands):
The project will not affect access to any recreation areas.

3.3.3. Infrastructure

3.3.3.1. Proposed Highway Section:
Refer to Appendix A for preliminary typical sections, plans, and profiles for Alternative 5. Drawings for Alternatives 5A and 5B are not included in the appendix, since the project footprint will essentially be the same as Alternative 5.

3.3.3.1. (1) Right-of-Way:
There are no proposed right-of-way acquisitions. All essential work can be performed within the existing right-of-way and permanent easements.

Releases from private property owners may be required for non-essential work such as reconnecting existing driveways, clearing trees and brush, and providing flatter cut and fill slopes that are easier to maintain and more aesthetically pleasing. Releases to Perform Contract Work on Private Land will be obtained during the final design phase in accordance with EI 11-010, prior to commencing any work on private property. In the event that work releases cannot be obtained, the contract work will be modified to fit within the existing right-of-way and permanent easements.

3.3.3.1. (2) Curb:
No curb installation is proposed by the project. The reflective traffic channelization devices will rest on a mountable, integral curb.

3.3.3.1. (3) Grades:
The proposed maximum grade will be 4.70% on Rogers Road and 6.65% on Cloverbank Road. Minimum grades will be 0.5% in to avoid creating flat spots and birdbaths at the flow line.

3.3.3.1. (4) Intersection Geometry and Conditions:
No intersections will be impacted by the project.
3.3.3.1. (6) Roadside Elements:

Snow storage will be accommodated on the embankment slopes or within the ditch sections. Any wide or otherwise undesirable driveways will be modified to comply with current NYSDOT Policy and Standards for Design of Entrances to State Highways.

Desirable clear zones widths will be provided where right-of-way and environmental constraints allow. Where minimum clear zones cannot be provided, any obstructions will be appropriately shielded. The final determination of the design clear zone width will be made during the final design phase.

3.3.3.2. Special Geometric Design Elements:

3.3.3.2. (1) Non-Standard Features:

No features within the project limits that do not meet the critical design elements described in Section 3.2.3.2 will be retained by the project.

3.3.3.2. (2) Non-Conforming Features:

No features within the project limits will be created that do not conform with standard engineering practice or other design parameters described in Section 3.2.3.2. Cross slope conditions described in Section 2.3.2.(2) will be corrected by the proposed improvements. The profile deficient crossing characteristics noted in the same section will be improved slightly by adjusting the proposed profile; however, it is not feasible to correct the conditions to conform with current standards.

3.3.3.3. Pavement and Shoulders:

The proposed pavement treatments vary with the respective alternative as described in Section 3.2. The pavement sections for Alternatives 4 and 5 were designed for a minimum 25-year service life using the ESAL-based method described in the NYSDOT Comprehensive Pavement Design Manual (2000). The pavement treatments for Alternative 5A and 5B will provide an estimated service life of 18 and 5 years, respectively.

Refer to the Pavement Evaluation and Treatment Selection Report in Appendix D for detailed information.

3.3.3.4. Drainage Systems:

Overall drainage patterns within the project limits will not be altered significantly. An open drainage system consisting of roadside ditches will be maintained except where right-of-way constraints or utilities do not allow. Existing drainage structures and culvert will be cleaned and frame and grate adjustments may be necessary.

The project will not involve greater than one acre of soil disturbance; therefore, a State Pollution Discharge Elimination System (SPDES) permit for construction activities will not be required. Refer to Section 4.4.8 for additional information.

3.3.3.5. Geotechnical:

Continuous edge drain trenches will be constructed along both roadways to mitigate the negative effects of the wet subgrade soils on the pavement structure. No other special soil conditions are anticipated.

3.3.3.6. Structures:

There are no bridges or large culverts within the project limits.

3.3.3.7. Hydraulics of Bridges and Culverts:

There are no bridges or large culverts over waterways within the project limits. No detailed hydraulic analyses have been performed.
3.3.3.8. Guide Railing, Median Barriers and Impact Attenuators:
The existing guide railing on Rogers Road will not be affected by the project.

3.3.3.9. Utilities:
Various underground and overhead utilities may be impacted by the project. Impacts to private utilities, including gas, telephone, and cable television, should be coordinated with the respective owners for relocation. Resolution of conflicts with public utilities, including water and sanitary sewers and services, will be included in the project. Potential utility conflicts include:

- **Water**: No conflicts with existing water mains and water services are anticipated. Hydrant elevation adjustment and valve box adjustment may be required to accommodate the proposed grading.
- **Sanitary Sewer**: No conflicts with existing sanitary sewers and laterals are anticipated. Manhole cover adjustment may be required to accommodate the proposed grading.
- **Natural Gas**: No conflicts with the existing transmission or distribution mains are anticipated.
- **Electric**: Overhead electric lines carried by utility poles near or outside of the existing right-of-way are not expected to be in conflict. Several utility poles on the north side of Cloverbank Road may conflict with the grading. Guy wires for several utility poles near Rogers Road may also conflict with the grading.
- **Telephone**: No records have been received to date.
- **Cable Television**: Conflicts with overhead CTV lines carried by poles shared with electric and telephone will be required.
- **Railroad C&S Lines**: No conflicts are anticipated.

All costs associated with public utility relocations or private utility relocations outside of the existing public right-of-way will be subject to reimbursement by the project. Costs for any private utility relocations within the existing public right-of-way will be the responsibility of the respective utility owner; with an exception for any underground electric services, which will be included in the project.

A final utility inventory would be completed during the final design phase of the project to verify impacts to the above-mentioned facilities.

3.3.3.10. Railroad Facilities:
The existing grade crossing surfaces will not be affected by the project. While the surfaces were originally planned to be extended by NYSDOT under the signal upgrade project to accommodate the widened pavement approaches for the quiet zone project, the Railroads did not look favorably upon that approach and required that any widening would necessitate reconstruction of the surfaces in their entirety. The crossing surfaces are not programmed for reconstruction in the foreseeable future, so the Railroads and NYSDOT indicated that the significant additional costs to reconstruct the surfaces would have to be borne by the Town. In light of this, the existing surfaces will remain and the approach pavement work will terminate at the field side of the outermost rails. This leaves a less than desirable paved shoulder width at the grade crossing surfaces on Cloverbank Road – 4 feet is desirable, 3 feet is proposed – but little can be done to remedy the situation within the scope of the project.

Approximate locations of proposed signal stanchions and gates are shown on the plans based on current MUTCD standards. The locations of proposed signals will be coordinated with the Railroads as well as NYSDOT as the project progresses.
3.3.4. Landscape and Environmental Enhancements

3.3.4.1. Landscape Development and Other Aesthetics Improvements:

The extent of landscaping improvements, including plantings, screenings, and aesthetic improvements will be determined as the design phase progresses. The need for any such treatments would be determined with input from the public including stakeholders.

3.3.4.2. Environmental Enhancements:

No practical opportunities for environmental enhancements within the project area have been identified to date. Opportunities for improvements in accordance with NYSDOT’s Environmental Initiative should be examined as the project progresses. These are actions to enhance the natural and manmade environment above and beyond the required project mitigation measures. They may include features that provide the opportunity for enhancement by local governments or other agencies or organizations as betterments. Examples include: fishing access, boat and canoe launch sites, development of pocket parks, habitat improvements, and enhanced wetlands.

3.3.5. Miscellaneous:

None.
CHAPTER 4 – SOCIAL, ECONOMIC AND ENVIRONMENTAL CONDITIONS AND CONSEQUENCES

4.1. Introduction

The chapter discusses the environmental issues associated with the proposed quiet zone improvements at the Rogers Road and Cloverbank Road grade crossings located in the Town of Hamburg, Erie County, New York. The proposed project will include a traffic channelization and pavement improvements to allow for the implementation of two railroad quiet zones along the corridor.

4.1.1. Environmental Classification and Lead Agencies

NEPA Classification
This Federal-Aid project is expected to be progressed as a Class II action (Programmatic Categorical Exclusion) because it does not individually or cumulatively have a significant environmental impact, and is excluded from the requirement to prepare an Environmental Impact Statement (EIS) or an Environmental Assessment (EA). In accordance with the Federal Highway Administration’s regulations 23 CFR 771.117(d) (the ‘D List’) this project meets the project description of the D List as highway reconstruction. Projects that meet the criteria for Programmatic Categorical Exclusion require administrative approval to qualify for this designation. A copy of the completed NEPA Assessment Checklist is included in Appendix B.

The Federal Highway Administration (FHWA) is the NEPA lead agency.

SEQR Classification
This project is expected to be classified as a Type II action in accordance with 6 NYCRR Part 617 §617.5(c)(4) and §617.5(c)(16), procedure for implementation of State Environmental Quality Review (SEQR) Act. SEQR classification is not yet complete.

The Town of Hamburg is the lead agency for SEQR.

4.2. Environmental Considerations

4.2.1. Screenings and Preliminary Investigations

4.2.1.1. General Ecology and Endangered Species:

The New York State Department of Environmental Conservation (NYSDEC), the U.S. Fish and Wildlife Service (USFWS), and the National Oceanic and Atmospheric Administration (NOAA) division of National Marine Fisheries Service (NMFS) were contacted for information regarding the presence of state and/or federally listed threatened, endangered or special concern species that may be impacted by the proposed project.

The NYSDEC Natural Heritage Program response letter dated May 14, 2013 (included within Appendix G) indicates that there are no known occurrences or rare or State-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of the project site. As such, no impacts upon State-listed, endangered or species of concern are anticipated.

A review of the U.S. Fish and Wildlife Service (USF&WS) database indicates that there are no Federally listed, delisted, or proposed endangered or threatened species located within Erie County. There is no habitat located within the project area that is currently designated “Critical Habitat” in accordance with the Endangered Species Act (ESA).
A direct response from NOAA-National Marine Fisheries Service is not anticipated.

Copies of applicable correspondence are included in Appendix G of this report.

4.2.1.2. Ground Water:

Federal Sole Source Aquifer
A review of the EPA-designated Sole Source Aquifer Areas Federal Register Notices, Maps, and Fact Sheets indicates that the project is not located in a Sole Source Aquifer Project Review Area. No federal review and/or approvals are required pursuant to Section 1424(e) of the Safe Drinking Water Act.

State Aquifer
NYSDEC aquifer GIS data files have been reviewed and it has been determined that the proposed project is not located in an identified Primary Water Supply or Principal Aquifer Area. No further investigation for NYSDEC designated aquifers is required.

Unconfined Aquifer
The USGS Numbered Series map from the Water-Resources Investigations Report entitled *Potential Yields of Wells in Unconsolidated Aquifers in Upstate New York*, Niagara Sheet, dated 1988, indicates there are no designated unconfined aquifers within the project area.

4.2.1.3. Surface Water:

There are no named streams, ponds, or other waterways within the project limits. Surface waters within the project limits consist of a creek that flows west near Rogers Road. The creek is located north of the Rogers Road grade crossings. No permits for stream disturbance will be required.

It is not expected that the project will result in changes to the overall surface water drainage patterns and will not significantly increase pavement surface area. Therefore, increases in the surface water runoff rates and volumes are not expected as a result of the proposed project.

During construction, storm water runoff from exposed soil surfaces may flow into the existing surface conveyance system and subsequently into adjacent surface water streams. These flows will be managed by the use of sediment and erosion control techniques. These techniques will be part of a sediment and erosion control plan to be implemented during construction and will conform with the requirements of the NYSDOT *Standard Specification for Temporary Soil Erosion and Water Pollution Control* and the NYS *Guidelines for Urban Erosion and Sediment Control*.

No adverse impact to surface water is expected as a result of this project.

State Wild, Scenic and Recreational Rivers
There are no NYSDEC Designated, Study or Inventory state listed Wild, Scenic or Recreational Rivers within the project limits. No further review is required.

National Wild and Scenic Rivers
There are no National Wild or Scenic Rivers within the project limits. No further review is required.

4.2.1.4. State Wetlands:

There are no NYSDEC regulated freshwater wetlands or regulated adjacent areas (100 feet) within the project area, as per the NYSDEC Freshwater Wetlands Map; Buffalo SE, Hamburg and Eden Quadrangles; and the NYSDEC online Environmental Resource Mapper. An Article 24 wetland permit will not be required.

4.2.1.5. Federal Jurisdictional Wetlands:

The National Wetlands Inventory (NWI) database accessed from the United States Fish and Wildlife Service (USFWS) indicated that there are no federally regulated wetlands within the project limits.
The project site has been reviewed for potential wetlands in accordance with the criteria defined in the 1987 US Army Corps of Engineers *Wetland Delineation Manual*. Preliminary observations of the vegetation present at the project location indicate that non-hydrophytic vegetation is present. The National Resources Conservation Service (NRCS) Web Soil Survey of the project location indicated the presence of predominantly non-hydric soils. It has been determined the project will not impact areas that meet this criteria. No further coordination with the U.S. Army Corps of Engineers (USACE) is anticipated.

4.2.1.6. Floodplains:

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) for the Town of Hamburg were reviewed to determine the presence of floodplains within the project limits. The entirety of the Rogers Road portion of the project is located within a Zone AE 100-year floodplain. The Cloverbank Road portion of the project is not located within a floodplain area.

The project will not significantly raise the profile of the road in a manner that will impact the existing flood rating within the project area.

4.2.1.7. Coastal Zone Management:

The project is not within a coastal zone and is not covered by either the Coastal Zone Management Act or the Waterfront Revitalization and Coastal Resources Act.

4.2.1.8. Navigable Waterways:

There are no navigable waterways within the project limits as defined by the USACE or the USCG; therefore, neither a Section 10 nor a Section 9 permit will be required.

4.2.1.9. Cultural Resource Investigations:

National Heritage Areas Program

Records from the New York State Historic Preservation Office (SHPO) and National Register of Historic Places were reviewed for listed historic properties that may be impacted by this project. There are no listed historic sites within the project limits.

The project is located within a potentially archeologically sensitive area as indicated by the NYSOPR&HP SHPO database. A NYSDOT Project Submittal Package was prepared and forwarded to the Regional Cultural Resources Coordinator for further review. Based on the review, the project activities have no potential to cause effects on historic properties in accordance with 36 CFR800.3(a)(1) therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act. The correspondence received from the Regional Cultural Resource Coordinator dated July 30, 2013 is included in Appendix G.

4.2.1.10. Parks:

The proposed project has a park located between the two grade crossings. Rogers Road is located approximately 0.4 miles north of William D. Williams Park and Cloverbank Road is located approximately 1.4 miles south of the park. No impacts to the park are expected due to this proposed project.

4.2.1.11. Hazardous Waste/Contaminated Materials:

Introduction

A Hazardous Waste/Contaminated Materials (HW/CM) Screening was conducted at the project site and adjoining areas within the project limits. This screening included available record review and a project site walkover. The purpose of this assessment is to identify potential areas of environmental concern that may be disturbed during construction of the proposed project.

Environmental Data Resources (EDR)

Environmental Data Resources (EDR) Inc. was contracted to provide a comprehensive review of Federal, State and local listed data to identify potential sites of environmental concern in the project vicinity. This data search was performed in accordance with ASTM E-1527-05 standards for minimum search distance.
The use of the EDR resource allows for a comprehensive listing of site of potential environmental concern. A complete copy of the EDR report is available upon request. Exhibit 4.2.1.11 summarizes the information obtained through a review of the EDR report and supplemental research of the project corridor.

<table>
<thead>
<tr>
<th>STANDARD Environmental Record Sources</th>
<th>Minimum Search Distance: ASTM Standard-Miles</th>
<th>No. of Listed Properties¹ (from EDR Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal NPL Site List</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Federal Delisted NPL Site List</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Federal CERCLIS List</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Federal CERCLIS NFRAP Site List</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA CORRACTS Facilities List</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA non-CORRACTS TSD Facilities List</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA Generators List</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Federal Institutional Control/Engineering Control Registries</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Federal ERNS List</td>
<td>Site only</td>
<td>0</td>
</tr>
<tr>
<td>State and Tribal Hazardous Waste Sites – equivalent CERCLIS</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>State and Tribal Landfill and/or Solid Waste Disposal Site Lists</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>State and Tribal Leaking Storage Tank Lists</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>State and Tribal Registered Storage Tank Lists</td>
<td>Site and adjoining properties</td>
<td>3</td>
</tr>
<tr>
<td>State and Tribal Institutional Control/Engineering Control Registries</td>
<td>Site and adjoining properties</td>
<td>0</td>
</tr>
<tr>
<td>State and Tribal Voluntary Cleanup Sites</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>State and Tribal Brownfield Sites</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional Environmental Records

| Local Lists of Registered Storage Tanks | 0.25 | 2 |
| Records of Emergency Release Reports-NY Spills | 0.125 | 8 |

Other Ascertainable Records

RCRA-Non Gen	0.25	0
Hazardous Substance Waste Disposal Sites (HSWDS)	0.5	0
MANIFEST	0.25	0

Notes:
1. Sites may be listed in more than one database.
EDR Findings Overview
Although several properties/areas of concern were identified by the EDR report, not all pose a concern to the proposed project. Some of the properties/sites were unlikely to pose a concern to the proposed project based on one or more of the following:

- Proximity to the proposed project.
- The assumed groundwater flow direction within the project area is away from the proposed project and is unlikely to pose a threat to the project.
- The issue was minor in nature and cleaned up immediately.
- Legal disposal records without indication of a violation.

The properties/areas of concern that may pose a concern to the project are indicated and discussed in the following sections.

Mount Vernon Sewer District property
4906 Rogers Road
Station 20+24 to 23+50 (approximate) west side of Rogers Road.
This property is located on the southern end of the Rogers Road project corridor. In September 1997 a diesel spill was reported at this property. According to the information provided, this spill was the result of a tank failure. Reportedly the spill was cleaned up and closed in November 1997.

Railroad Grade Crossings
Typical contaminants associated with railroads include: PSHs (polycyclic aromatic hydrocarbons), some metals, petroleum products, and herbicides. All grade crossings have been reconstructed as recently as the past five years and the Rogers Road Crossings were substantially raised in the late 1950s. The depth of construction in the vicinity of the grade crossings will also be minimal, so it is unlikely that any unknown contaminated materials may be encountered. Although unlikely, contamination may be encountered during construction, therefore the Town may wish to note this location in the Contract Documents and add a specification for the screening, segregating, sampling and potential disposal of contaminated soil associated with a former at grade railroad crossing.

The EDR report indicates several other spill reports and no MANIFEST records. The spill reports are listed as closed/meeting standards or are located a significant distance from the proposed improvements; therefore, they are not expected to impact the project location relative to the project corridor.

Historical Sanborn Map Review
Sanborn Maps are utilized as part of the HW/CM Screening since they serve as an historical reference to prior land use. The Certified Sanborn Map Report provided by EDR indicated that the complete holding of the Sanborn Library, LLC Collection was searched and fire insurance maps covering the project location were not found. This area is unmapped.

Aerial Photographs

Project Site Visit
The HW/CM Screening included a site visit of the project corridor. The objective of the site visit is to obtain familiarity with the project area and properties located adjacent to the project limits, to note observable environmental concerns, review the characteristics of the project corridor, and identify areas exhibiting signs of possible environmental degradation. No visual environmental concerns were noted during the site visit.

Hazardous Waste/Contaminated Materials Screening Conclusion/Recommendation
In conclusion, based on an initial review, the Mount Vernon Sewer District property was the only contaminated site that had the potential to be impacted by the proposed project. The known contaminant is petroleum due to a tank failure. The contaminated soil was removed from the site and closed by the DEC. Additional research revealed that all potentially contaminated areas of the properties are not close
to the proposed highway improvements or existing highway boundary. Therefore, no impacts during construction are anticipated and no additional analysis or testing is required.

As with any environmental screening in areas where subsurface testing was not completed, the possibility of unknown subsurface contamination exists. Should suspect materials be encountered during the course of project execution, appropriate measures should be taken to report such contamination, determine the nature and extent of any possible hazardous materials, and for proper management of such materials. Provisions will be included within the construction documents that will require the contractor to properly dispose of any contaminated materials during construction.

4.2.1.12. Asbestos:

An Asbestos Containing Material (ACM) Screening was conducted at the project site and adjoining areas within the project limits. This screening consisted of a review of available records and as-built drawings. The purpose of this Screening was to identify the potential of encountering ACM’s that may be disturbed during construction of the proposed project.

Drawing Record Review
No suspect items were called out on the record drawings that were provided for the project corridor.

Utilities
The following utility drawings were provided and subsequently reviewed.
- Town of Hamburg Sanitary Sewer
- National Fuel Gas Transmission and Distribution Mains

It is anticipated that utility impacts will be limited to relocation of overhead utility poles or guy wires. No impacts to water, drainage sewer, gas, or communications are anticipated.

Asbestos Screening Conclusions/Recommendations
Asbestos containing materials (ACMs) were not identified on the utility records. Due to the nature of the project components, unknown asbestos containing materials may be present. Any ACMs discovered during construction activities should be addressed in accordance with all applicable state and federal regulations.

4.2.1.13. Noise:

No noise impacts are expected due to project implementation. This project involves reconstruction of the existing pavement of Rogers Road and Cloverbank Road with no significant change in alignment, no increase in the number of through traffic lanes and no increase in traffic volumes. This is not a Type I project; therefore, a noise study is not required.

4.2.1.14. Air Quality:

An Air Quality Analysis is not necessary since the project will not increase traffic volumes, reduce source-receptor distances, or change other existing conditions to such a degree as to jeopardize attainment of the National Ambient Air Quality Standards.

During construction, air quality is most affected by the increase of airborne particulates (dust). This increase is sporadic and temporary in nature and would be most noticeable in the area immediately adjacent to construction. The impacts can be minimized by the use of dust control provisions found in the NYSDOT Standard Specifications for Construction.

4.2.1.15. Energy:

The project will not have an impact on energy usage.

4.2.1.16. Farmlands:

The project area is not located within an agricultural district.
Exhibit 4.2.1.16 provides a summary of the soils mapped within the project corridor and the Natural Resources Conservation Service (NRCS) rating of each soil.

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrA</td>
<td>Brockport silty clay loam, 0 to 8 percent slopes</td>
<td>Farmland of statewide importance</td>
</tr>
<tr>
<td>BrB</td>
<td>Brockport silty clay loam, 3 to 8 percent slopes</td>
<td>Farmland of statewide importance</td>
</tr>
<tr>
<td>CoA</td>
<td>Churchville silt loam, 0 to 3 percent slopes</td>
<td>Prime farmland if drained</td>
</tr>
<tr>
<td>RfB</td>
<td>Remsen silty clay loam, 3 to 8 percent slopes</td>
<td>Farmland of statewide importance</td>
</tr>
<tr>
<td>Uc</td>
<td>Udorthents, smoothed</td>
<td>Not prime farmland</td>
</tr>
</tbody>
</table>

As shown in Exhibit 4.2.1.16 some of the soils within the project corridor are rated as prime farmland if drained or farmland of statewide importance. The proposed project will not convert any prime or unique farmland, or farmland of state or local importance, or require the acquisition of any portion of actively farmed land, as defined by the USDA Natural resources Conservation Service, to a nonagricultural use. No further coordination regarding farmlands is required.

4.2.1.17. Visual Impacts:

The implementation of this project will result in a minor positive visual impact to the immediate environment.

4.2.1.18. Critical Environmental Areas:

There are no critical environmental areas located within or adjacent to the project limits, per NYSDEC data.

4.2.1.19. Anticipated Environmental Permits

No environmental permits are anticipated. The specific permitting and coordination activities are a function of the final highway configuration and design. It is noted that although specific permits may not be required, coordination with several agencies (SHPO, USACE and NYSDECO) may be required for various project activities.
Answer the following questions by checking YES or NO:

I. THRESHOLD QUESTION

1. Does the project involve unusual circumstances as described in 23 CFR §771.117(b)?

 - YES
 - NO

 If YES, the project does not qualify as a Categorical Exclusion and an EA or EIS is required. You may STOP COMPLETING THE CHECKLIST.

 - If NO, go on:

II. AUTOMATIC CATEGORICAL EXCLUSION

2. Is the project an action listed as an Automatic Categorical Exclusion in 23 CFR §771.117(c) (C List) and/or is the project an element-specific Project classified by FHWA as a Categorical Exclusion on July 22, 1996?

 - YES
 - NO

 If YES to Question 2, the project qualifies for a C List Categorical Exclusion. You may STOP COMPLETING THE CHECKLIST. The Checklist should be included in the Appendix of the Final Design Report (or Scope Summary Memorandum/Final Design Report). The CATEGORICAL EXCLUSION DETERMINATION memo is to be sent to the appropriate Main Office Design liaison unit with a copy of the Final Design report (or Scope Summary Memorandum/Final Design Report). A copy of the CATEGORICAL EXCLUSION DETERMINATION memo must also be sent to the Office of Budget and Finance, Project and Letting Management, and others (see sample DETERMINATION memo attached).

 (Note – Even if YES to Question 2, there may be specific environmental issues that still require an action such as an EO 11990 Wetland Finding or a determination of effect on cultural resources. The project is still an Automatic Categorical Exclusion, but the necessary action must be taken, such as obtaining FHWA’s signature on the wetland finding. Refer to the appropriate section of the Environmental Procedures Manual for guidance.)

 - If NO to Question 2, go on:
III. PROGRAMMATIC CATEGORICAL EXCLUSION

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Is the project on new location or does it involve a change in the functional classification or added mainline capacity (add through-traffic lanes)?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>4. Is this a Type I project under 23 CFR 772 “Procedures for Abatement of Highway Traffic Noise and Construction”?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>5. If the project is located within the limits of a designated sole source aquifer area or the associated stream flow source area, is the drainage pattern altered?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>6. Does the project involve changes in travel patterns?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>7. Does the project involve the acquisition of more than minor amounts of temporary or permanent right-of-way? [A minor amount of right-of-way is defined as not more than 10 percent of a parcel for parcels under 4 ha (10 acres) in size, 0.4 ha (1 acre) of a parcel 4 ha to 40.5 ha (10 to 100 acres) in size, and 1 percent of a parcel for parcels greater than 40.5 ha (100 acres) in size]</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>8. Does the project require a Section 4(f) evaluation and determination in accordance with the FHWA guidance?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>9. Does the project involve commercial or residential displacement?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>10. If Section 106 applies, does FHWA´s determination indicate an opinion of adverse effect?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>11. Does the project involve any work in wetlands requiring a Nationwide Wetland Permit #23?</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>12. Does the project involve any work in wetlands requiring an individual Executive Order 11990 Wetland Finding?</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
13. Has it been determined that the project will significantly encroach upon a flood plain based on preliminary hydraulic analysis and consideration of EO 11988 criteria as appropriate?

 YES NO

 []

14. Does the project involve construction in, across or adjacent to a river designated as a component proposed for or included in the National System of Wild and Scenic Rivers?

 YES NO

 []

15. Does the project involve any change in access control?

 YES NO

 []

16. Does the project involve any known hazardous material sites or previous land users with potential for hazardous material remains within the right-of-way?

 YES NO

 []

17. Does the project occur in an area where there are Federally listed endangered or threatened species or critical habitat?

 YES NO

 []

18. Is the project, pursuant to EPM Chapter 1A and Table 2 and Table 3 of 40 CFR Parts 51 and 93, non-exempt or does it exceed any ambient air quality standard?

 YES NO

 []

19. Does the project lack consistency with the New York State Coastal Zone Management Plan and policies of the Department of State, Office of Coastal Zone Management?

 YES NO

 []

20. Does the project impact or acquire any Prime or Unique Farmland as defined in 7 CFR Part 657 of the Federal farmland Protection Policy Act and are there outstanding compliance activities necessary? (Note: Interpret compliance activity to mean completion of Form AD 1006.)

 YES NO

 []
• If NO to Questions 3-20, go on to answer Question 21.
• If YES, to any question 3-20, project will not qualify as a Programmatic Categorical Exclusion. Answer Questions 21 and 22 for documentation only and go on to Question 23.

21. Does the project involve the use of a temporary road, detour or ramp closure?

 YES NO
 ✓ □

 If NO to Questions 3-20 and NO to Question 21, the project qualifies as a Programmatic Categorical Exclusion. You may STOP COMPLETING THE CHECKLIST. The checklist should be included in the Appendix of the Final Design Report (or Scope Summary Memorandum/Final Design Report). The CATEGORICAL EXCLUSION DETERMINATION memo is to be sent to the appropriate Main Office Design liaison unit with a copy of the Final Design report (or Scope Summary Memorandum/Final Design Report). A copy of the CATEGORICAL EXCLUSION DETERMINATION memo must also be sent to the Office of Budget and Finance, Project and Letting Management, and others (see sample DETERMINATION memo attached).

• If YES to Question 21, preparer should complete Question 22 (i-v). If Questions 3-20 are NO and 21 is YES, the project will still qualify as a Programmatic Categorical Exclusion if Question 22 (i-v) are YES.

22. Since the project involves the use of temporary road, detour or ramp closure, will all of the following conditions be met:

 i. Provisions will be made for pedestrian access, where warranted, and access by local traffic and so posted.
 YES NO
 ✓ □

 ii. Through-traffic dependent business will not be adversely affected.
 YES NO
 ✓ □

 iii. The detour or ramp closure, to the extent possible, will not interfere with any local special event or festival.
 YES NO
 ✓ □

 iv. The temporary road, detour or ramp closure does not substantially change the environmental consequences of the action.
 YES NO
 ✓ □
v. There is no substantial controversy associated with the temporary road, detour or ramp closure. √ ____

- If Questions 3-20 are NO, 21 is YES and 22 (i-v) are YES, the project qualifies as a Programmatic Categorical Exclusion. You may STOP COMPLETING THE CHECKLIST. The checklist should be included in the Appendix of the Final Design Report (or Scope Summary Memorandum/Final Design Report). The CATEGORICAL EXCLUSION DETERMINATION memo is to be sent to the appropriate Main Office Design liaison unit with a copy of the Final Design report (or Scope Summary Memorandum/Final Design Report). A copy of the CATEGORICAL EXCLUSION DETERMINATION memo must also be sent to the Office of Budget and Finance, Project and Letting Management, and others (see sample DETERMINATION memo attached).

- If Questions 3-20 are NO, 21 is YES and any part of 22 is NO, go on to Question 23:

23. Is the project section listed in 23 CFR §771.117(d) (D List) or is the project An action similar to those listed in 23 CFR §771.117(d)? ____ ____

For those questions which precluded a Programmatic Categorical Exclusion, documentation should be provided for an YES response to Questions 3-20 or for a NO response to any part of Questions 22 (i-v). This documentation, as well as the checklist, should be included in the Design Approval Document, i.e., Final Design report, etc., to be submitted to the Main office/FHWA Design liaison unit for submission to the FHWA Decision for classification of the project as D List Categorical Exclusion.
APPENDIX C
TRAFFIC INFORMATION

TRAFFIC DATA ANALYSIS
HIGHWAY-RAIL GRADE CROSSING ACCIDENT/INCIDENT REPORT
CROSSING INVENTORY INFORMATION
PEDESTRIAN GENERATOR CHECKLIST
Traffic Data Analysis (AADT & DHV)

Rogers Road & Cloverbank Road Railroad Quiet Zones

Client: Town of Hamburg

Subject: Rogers Road & Cloverbank Road Railroad Quiet Zones

<table>
<thead>
<tr>
<th></th>
<th>Cloverbank Road</th>
<th>Rogers Road</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AADT</td>
<td>DHV</td>
</tr>
<tr>
<td>Existing 2013</td>
<td>2,273</td>
<td>205</td>
</tr>
<tr>
<td>ETC 2014</td>
<td>2,284</td>
<td>206</td>
</tr>
<tr>
<td>ETC+10 2024</td>
<td>2,396</td>
<td>216</td>
</tr>
<tr>
<td>ETC+20 2034</td>
<td>2,508</td>
<td>226</td>
</tr>
</tbody>
</table>

Projected annual growth rate: 0.50% per yr.
2. Name of Other Railroad or Other Entity Filling for Equipment Involved in Train Accident/Incident
Norfolk Southern Corp. [NS]

3. Name of Railroad or Other Entity Responsible for Track Maintenance
Norfolk Southern Corp. [NS]

471717J

7. Nearest Railroad Station
HAMBURG

8. Subdivision
PITTSBURGH

9. County
ERIE

11. City (if in a city)
HAMBURG

21. Temperature
43 °F

22. Visibility (single entry)

23. Weather (single entry)

24. Type of Equipment Consist (single entry)
A. Train pulling- RCL B. Train standing- RCL C. Train pushing- RCL D. DMU Locomotive(s)

25. Track Type Used by Rail Equipment Involved

26. Track Number or Name
BUFFALO LINE

27. FRA Track Class (1-9,X)
4

28. Number of Locomotive Units
2

29. Number of Cars
68

30. Consist Speed (Recorded speed if available)
R. Recorded E. Estimated

31. Time Table Direction

32. Type of Crossing Warning

33. Signaled Crossing Warning (See reverse side for instructions and codes)
1. Yes 2. No 3. Unknown

34. Roadway Conditions
A. Dry B. Wet C. Snow/Slush D. Ice E. Sand,Mud,Dirt,Oil,Gravel F. Water (Standing, Moving)

35. Location of Warning

36. Crossing Warning Interconnected with Highway Signals
1. Yes 2. No 3. Unknown

37. Crossing Illuminated by Street Lights or Special Lights
1. Yes 2. No 3. Unknown

38. Highway User's Age
1. Male 2. Female

39. Highway User's Gender

40. Highway User Went Behind or in Front of Train and Struck or was Struck by Second Train

41. Highway User
1. Went around the gate 2. Stopped and then proceeded 3. Did not stop 4. Stopped on crossing 5. Other (specify)

42. Driver Passed Standing Highway Vehicle
1. Yes 2. No 3. Unknown

43. View of Track Obscured by (primary obstruction)

44. Driver was

45. Was Driver in the Vehicle?
1. Yes 2. No

46. Highway-Rail Crossing Users
0 0

47. Highway Vehicle Property Damage (est. dollar damage)
$1,000

49. Railroad Employees
0 0

50. Total Number of People on Train (include passengers and train crew)

52. Passengers on Train
0 0

53a. Special Study Block
Video Taken? Yes No

53b. Special Study Block
Video Used? Yes No

54. Narrative Description

55. Typed Name and Title

56. Signature

57. Date

NOTE: This report is part of the reporting railroad's accident report pursuant to the accident reports statute and, as such shall not "be admitted as evidence or used for any purpose in any suit or action for damages growing out of any matter mentioned in said report..." 49 U.S.C. 20903. See 49 C.F.R. 225.7 (b).

FORM FRA F 6180.57 (Rev. 08/10) * NOTE THAT ALL CASUALTIES MUST BE REPORTED ON FORM FRA F 6180.55A OMB approval expires 02/28/2014
Form FRA F 6180.57

DEPARTMENT OF TRANSPORTATION
FEDERAL RAILROAD ADMINISTRATION (FRA)

ACCIDENT/INCIDENT REPORT
OMB Approval No. 2130-0500

<table>
<thead>
<tr>
<th>Name Of</th>
<th>Alphabetic Code</th>
<th>RR Accident/Incident No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSX Transportation [CSX]</td>
<td>1a. CSX</td>
<td>1b. 000030393</td>
</tr>
<tr>
<td>CSX Transportation [CSX]</td>
<td>3a. CSX</td>
<td>3b. 000030393</td>
</tr>
</tbody>
</table>

1. Reporting Railroad	CSX Transportation [CSX]
2. Other Railroad Involved in Train Accident/Incident	
3. Railroad Responsible for Track Maintenance	CSX Transportation [CSX]
4. U.S. DOT-AAR Grade Crossing ID No.	519501T

| 5. Date of Accident/Incident | 03/20/07 |
| 6. Time of Accident/Incident | 01:11 PM |

7. Nearest Railroad Station	BUFFALO
8. Division	
9. County	
10. State	

| 11. City (if in a city) | HAMBURG |
| 12. Highway Name or No. | CLOVER BANK RD. |

13. Type	A. Auto	D. Pick-up truck	G. School Bus
14. Vehicle Speed			
15. Direction	A. (geographical)		
16. Position	1. Stalled on crossing		
20. Was the highway user and/or rail equipment involved in the impact transporting hazardous materials?	1. Highway User		
20c. State the name and quantity of the hazardous material released, if any			

21. Temperature	20 °F
22. Visibility	
23. Weather	
24. Type of Equipment	

| 25. Track Type Used by Rail Equipment Involved | |
| 26. Track Number or Name | #1 MAIN |

27. FRA Track Class	
28. Number of Locomotive Units	4
29. Number of Cars	33
30. Consist Speed (Recorded if available)	

31. Time Table Direction	
32. Type of Crossing Warning	1. Gates
33. Signaled Crossing Warning	4. Wig wags
34. Whistle Ban	
35. Location of Warning	

| 36. Crossing Warning Interconnected with Highway Signals | |
| 37. Crossing Illuminated by Street Lights or Special Lights | |

| 38. Driver's Age | 39. Driver's Gender | |
| 40. Driver Drove Behind or in Front of Train and Struck or was Struck by Second Train |

41. Driver	1. Drove around or thru the gate
42. Driver Passed Standing Highway Vehicle	
43. View of Track Obscured by (primary obstruction)	

44. Driver was 1. Killed	2. Injured
45. Was Driver in the Vehicle?	
46. Highway-Rail Crossing Users	
47. Highway Vehicle Property Damage (est. dollar damage)	$1,800
48. Total Number of Highway-Rail Crossing Users (include driver)	

| 49. Railroad Employees | |
| 50. Total Number of People on Train (include passengers and crew) | |

| 51. Is a Rail Equipment Accident / Incident Report Being Filed | |
| 52. Passengers on Train | |

| 53a. Special Study Block | |
| 53b. Special Study Block | |

| 54. Narrative Description | |

Accident/Incident Report

Q14019 ON #1 MAIN APPROACHING CROSSING WHEN AUTO DASHED ACROSS TRACKS RESULTING IN LEAD LOCO CLIPPING REAR OF AUTO. AUTO FLED SCENE. AGE AND GENDER OF DRIVER UNKNOWN. ALSO AT CROSSING: ADVANCED WARNING, PAVEMENT MARKINGS (STOP LINES & RR XING SYMBOLS) AND 2 SIGNS SPECIFYING 3 TRACKS.///

| 55. Typed Name and Title | |
| 56. Signature | |

57. Date
ACIDENT/INCIDENT REPORT

<table>
<thead>
<tr>
<th>Name Of</th>
<th>1. Reporting Railroad</th>
<th>CSX Transportation [CSX]</th>
<th>1a.</th>
<th>CSX</th>
<th>1b.</th>
<th>000027234</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Other Railroad Involved in Train Accident/Incident</td>
<td>CSX Transportation [CSX]</td>
<td>2a.</td>
<td>CSX</td>
<td>2b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Railroad Responsible for Track Maintenance</td>
<td>CSX Transportation [CSX]</td>
<td>3a.</td>
<td>CSX</td>
<td>3b.</td>
<td>000027234</td>
<td></td>
</tr>
<tr>
<td>4. U.S. DOT-AAR Grade Crossing ID No.</td>
<td>519501T</td>
<td>5. Date of Accident/Incident</td>
<td>11/24/06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Time of Accident/Incident</td>
<td>05:12 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Nearest Railroad Station</td>
<td>BUFFALO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Division</td>
<td></td>
<td>9. County</td>
<td>ALBANY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. State</td>
<td>Erie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. City (if in a city)</td>
<td>HAMBURG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Highway Name or No.</td>
<td>CLOVER BANK RD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53a. Special Study Block</td>
<td>Public</td>
<td>53b. Special Study Block</td>
<td>Private</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highway User Involved

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Auto</td>
<td>D. Pick-up truck</td>
<td>G. School Bus</td>
<td>K. Pedestrian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Truck</td>
<td>E. Van</td>
<td>H. Motorcycle</td>
<td>M. Other (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment Involved

<table>
<thead>
<tr>
<th>17. Equipment</th>
<th>4. Car(s) (moving)</th>
<th>8. Other (specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Train (units pulling)</td>
<td>2. Train (units pushing)</td>
<td>3. Train (standing)</td>
</tr>
<tr>
<td>5. Car(s) (standing)</td>
<td>6. Light loco(s) (moving)</td>
<td>7. Light loco(s) (standing)</td>
</tr>
<tr>
<td>9. Train-pushing - RCL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weather

<table>
<thead>
<tr>
<th>23. Weather</th>
<th>24. Temperature (specify if minus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34°F</td>
<td></td>
</tr>
</tbody>
</table>

Type of Equipment

<table>
<thead>
<tr>
<th>25. Track Type Used by Rail Equipment Involved</th>
<th>26. Track Number or Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Location of Warning

<table>
<thead>
<tr>
<th>36. Crossing Warning Interconnected with Highway Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yes</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Consist

<table>
<thead>
<tr>
<th>30. Consist Speed (Recorded if available)</th>
<th>31. Time Table Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. R. Recorded</td>
<td>2. E. Estimated</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Driver's Age

<table>
<thead>
<tr>
<th>38. Driver's Age</th>
<th>39. Driver's Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Male</td>
<td>2. Female</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
</tr>
</tbody>
</table>

Driver Passed Standing

<table>
<thead>
<tr>
<th>42. Driver Passed Standing Highway Vehicle</th>
<th>43. View of Track Obscured by (primary obstruction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yes</td>
<td>2. No</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1. Permanent Structure</td>
<td>2. Standing railroad equipment</td>
</tr>
<tr>
<td>3. Passing Train</td>
<td>4. Vegetation</td>
</tr>
<tr>
<td>5. Other (specify)</td>
<td>6. Highway Vehicles</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Casualties:

<table>
<thead>
<tr>
<th>44. Driver was</th>
<th>45. Was Driver in the Vehicle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Highway-Rail Crossing Users

<table>
<thead>
<tr>
<th>46. Highway-Rail Crossing Users</th>
<th>47. Highway Vehicle Property Damage (est. dollar damage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Railroad Employees

<table>
<thead>
<tr>
<th>49. Railroad Employees</th>
<th>50. Total Number of People on Train (include passengers and crew)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Passengers on Train

<table>
<thead>
<tr>
<th>52. Passengers on Train</th>
<th>51. Is a Rail Equipment Accident / Incident Report Being Filed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

State the name and quantity of the hazardous material released, if any

<table>
<thead>
<tr>
<th>20b. Was there a hazardous materials release by the impact transporting hazardous materials?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Notes

- **NOTE THAT ALL CASUALTIES MUST BE REPORTED ON FORM FRA F 6180.55A**
Crossing No.: 519502A Update Reason: Changed Crossing Effective Begin-Date of Record: 09/28/12
Railroad: CSX CSX Transportation [CSX] Railroad
Initiating Agency: Railroad Type and Position: Public At Grade

Part I Location and Classification of Crossing

Division: ABLANY State: NY
Subdivision: BUFFALO TERM County: ERIE
Branch or Line Name: City: In HAMBURG
Railroad Milepost: 0010.25 Street or Road Name: ROGERS RD
RailRoad I.D. No.: QD Highway Type & No.: C-464
Nearest RR Timetable Stn: HAMBURG HSR Corridor ID:
Parent Railroad: CSX Transportation [CSX]
Crossing Owner: CSX Transportation [CSX]
ENS Sign Installed: Yes
Passenger Service: AMTRAK
Avg Passenger Train Count: 2
Adjacent Crossing with Separate Number:
Yes 471716C

Private Crossing Information:
Category: Public Access: Unknown
Specify Signs:
ST/RR A Specify Signals:
ST/RR B ST/RR C ST/RR D
Railroad Use:
State Use:

Narrative:

Emergency Contact: (800)232-0144 Railroad Contact: (904)359-1048 State Contact: (518)457-5521

Part II Railroad Information

Number of Daily Train Movements:
Num:
Less Than One Movement Per Day: No
Total Trains: 47 Total Switching: 0 Day Thru: 23
Typical Speed Range Over Crossing: From 74 to 79 mph Maximum Time Table Speed: 79
Type and Number of Tracks: 3 0
Does Another RR Operate a Separate Track at Crossing? No
Does Another RR Operate Over Your Track at Crossing? Yes: ATK
Part III: Traffic Control Device Information

Signs:
- Crossbucks: 2
- Advanced Warning: Yes
- Pavement Markings: No Markings
- Highway Stop Signs: 0
- Hump Crossing Sign: No
- Other Signs: 2

Train Activated Devices:
- Gates: 2
- Mast Mounted FL: 2
- Cantilevered FL (Over): 0
- Other Flashing Lights: 0
- Highway Traffic Signals: 0
- Other Train Activated Warning Devices: None
- Special Warning Devices Not Train Activated: No
- Type of Train Detection: Motion Detectors
- Traffic Light: N/A
- Interconnection/Preemption: N/A

Part IV: Physical Characteristics

Type of Development: Open Space
Smallest Crossing Angle: 60 to 90 Degrees
Number of Traffic Lanes: 2
Are Truck Pullout Lanes Present?: No
Is Highway Paved?: Yes
Crossing Surface: Asphalt and Flange
If Other:
Nearby Intersecting Highway?: 201 to 500 feet
Is it Signalized?: No
Does Track Run Down a Street?: No
Is Crossing Illuminated?: Yes
Is Commercial Power Available?: Yes

Part V: Highway Information

Highway System: Other FA Highway - Not NHS
Is Crossing on State Highway System: No
Annual Average Daily Traffic (AADT): 007405
AADT Year: 2010
Estimated Percent Trucks: 05
Avg. No of School Buses per Day: 2
Posted Highway Speed: 35
U.S. DOT - CROSSING INVENTORY INFORMATION
AS OF 5/24/2013

Crossing No.: 471716C
Update Reason: Changed Crossing
Effective Begin-Date of Record: 01/01/12
Railroad: NS Norfolk Southern Corp. [NS]
Initiating Agency Railroad
Type and Position: Public At Grade

Part I Location and Classification of Crossing

<table>
<thead>
<tr>
<th>Division:</th>
<th>ALBANY</th>
<th>State:</th>
<th>NY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision:</td>
<td>BUFFALO</td>
<td>County:</td>
<td>ERIE</td>
</tr>
<tr>
<td>Branch or Line Name:</td>
<td>BUFFALO</td>
<td>City:</td>
<td>In HAMBURG</td>
</tr>
<tr>
<td>Railroad Milepost:</td>
<td>0010.22</td>
<td>Street or Road Name:</td>
<td>ROGERS RD</td>
</tr>
<tr>
<td>RailRoad I.D. No.:</td>
<td></td>
<td>Highway Type & No.:</td>
<td>C-464</td>
</tr>
<tr>
<td>Nearest RR Timetable Stn:</td>
<td>HAMBURG</td>
<td>HSR Corridor ID:</td>
<td></td>
</tr>
<tr>
<td>Parent Railroad:</td>
<td></td>
<td>Latitude:</td>
<td>42.7544770</td>
</tr>
<tr>
<td>Crossing Owner:</td>
<td></td>
<td>Longitude:</td>
<td>-78.8793454</td>
</tr>
<tr>
<td>ENS Sign Installed:</td>
<td>Yes</td>
<td>Lat/Long Source:</td>
<td>Actual</td>
</tr>
<tr>
<td>Passenger Service:</td>
<td>None</td>
<td>Quiet Zone:</td>
<td>No</td>
</tr>
</tbody>
</table>

Private Crossing Information:

<table>
<thead>
<tr>
<th>Adjacent Crossing with Separate Number:</th>
<th>Yes</th>
<th>519502A</th>
</tr>
</thead>
</table>

Public Access: Unknown

Emergency Contact: (800)453-2530
Railroad Contact: (800)946-4744
State Contact: (518)457-5521

Part II Railroad Information

Number of Daily Train Movements:

Total Trains:	13
Total Switching:	0
Day Thru:	6
Typical Speed Range Over Crossing: From	40 to 60 mph
Maximum Time Table Speed:	60
Type and Number of Tracks:	Main: 1 Other: 0

Does Another RR Operate a Separate Track at Crossing? Yes: CSX
Does Another RR Operate Over Your Track at Crossing? No
Part III: Traffic Control Device Information

Signs:
- Crossbucks: 2
- Advanced Warning: Yes
- Pavement Markings: No Markings
- Hump Crossing Sign: No
- Other Signs: 1

Train Activated Devices:
- Gates: 2
- Mast Mounted FL: 2
- Cantilevered FL (Over): 0
- Other Flashing Lights: 6
- Highway Traffic Signals: 0
- Other Train Activated Warning Devices: None
- Channelization: None
- Track Equipped with Train Signals?: Yes

Pavement Markings:
- No Markings

Crossing Surface:
- Asphalt and Flange

Nearby Intersecting Highway?
- 76 to 200 feet

Does Track Run Down a Street?
- No

Is Commercial Power Available?
- Yes

Part IV: Physical Characteristics

Type of Development: Residential

Number of Traffic Lanes: 2

Is Highway Paved? Yes

Crossing Surface: Asphalt and Flange

Smallest Crossing Angle: 60 to 90 Degrees

Are Truck Pullout Lanes Present? No

If Other:

Does Track Run Down a Street? No

Is it Signalized? No

Is Crossing Illuminated? Yes

Is Commercial Power Available? Yes

Part V: Highway Information

Highway System:
- Other FA Highway - Not NHS

Functional Classification of Road at Crossing:
- Urban Collector

Is Crossing on State Highway System:
- No

Annual Average Daily Traffic (AADT): 006224

AADT Year: 2010

Estimated Percent Trucks: 05

Avg. No. of School Buses per Day: 0

Posted Highway Speed: 35
U.S. DOT - CROSSING INVENTORY INFORMATION
AS OF 5/24/2013

Crossing No.: 519501T Update Reason: Changed Crossing Effective Begin-Date of Record: 09/28/12
Railroad: CSX CSX Transportation [CSX] End-Date of Record:
Initiating Agency Railroad Type and Position: Public At Grade

Part I Location and Classification of Crossing

Division: ALCBANY State: NY
Subdivision: BUFFALO TERM County: ERIE
Branch or Line Name: City: In HAMBURG
Railroad Milepost: 0011.02 Street or Road Name: CLOVERBANK RD
RailRoad I.D. No.: QD Highway Type & No.: L
Nearest RR Timetable Stn: HAMBURG HSR Corridor ID:
Parent Railroad: CSX Transportation [CSX]
Crossing Owner: CSX Transportation [CSX] County Map Ref. No.: 2710
ENS Sign Installed: Yes Latitude: 42.7471910
Passenger Service: AMTRAK Longitude: -78.8909357
Avg Passenger Train Count: 2 Quiet Zone: No
Adjacent Crossing with Separate Number: Yes 471717J

Private Crossing Information:

Category: Public Access: Unknown
Specify Signs: Specify Signals:

ST/RR A ST/RR B ST/RR C ST/RR D

Railroad Use:
State Use:

Narrative:

Emergency Contact: (800)232-0144 Railroad Contact: (904)359-1048 State Contact: (518)457-5521

Part II Railroad Information

Number of Daily Train Movements:

Less Than One Movement Per Day: No
Total Trains: 47 Total Switching: 0 Day Thru: 23
Typical Speed Range Over Crossing: From 74 to 79 mph Maximum Time Table Speed: 79
Type and Number of Tracks: Main: 3 Other: 0 Specify:

Does Another RR Operate a Separate Track at Crossing? No
Does Another RR Operate Over Your Track at Crossing? Yes: ATK
Part III: Traffic Control Device Information

Signs:
- Crossbucks: 2
- Advanced Warning: Yes
- Pavement Markings: Stop Lines and RR Xing Symbols
- Other Signs: 2

Train Activated Devices:
- Gates: 2
- Mast Mounted FL: 2
- Cantilevered FL (Over): 0
- Other Flashing FL: 6
- Highway Traffic Signals: 0
- Other Train Activated Warning Devices: None
- Track Equipped with Train Signals: Yes
- Special Warning Devices Not Train Activated: N/A

Part IV: Physical Characteristics

Type of Development: Open Space
Number of Traffic Lanes: 2
Is Highway Paved? Yes
Crossing Surface: Asphalt and Flange
Smallest Crossing Angle: 60 to 90 Degrees
Are Truck Pullout Lanes Present? No
If Other: None

Nearby Intersecting Highway?: 201 to 500 feet
Is it Signalized? No
Does Track Run Down a Street? No
Is Crossing Illuminated? Yes
Is Commercial Power Available? Yes

Part V: Highway Information

Highway System: Non-Federal-aid
Is Crossing on State Highway System: No
Annual Average Daily Traffic (AADT): 002239
Estimated Percent Trucks: 04
Posted Highway Speed: 0

Functional Classification of Road at Crossing: Urban Local
AADT Year: 2010
Avg. No of School Buses per Day: 0
U.S. DOT - CROSSING INVENTORY INFORMATION
AS OF 5/24/2013

Crossing No.: 471717J
Update Reason: Changed Crossing
Effective Begin-Date of Record: 03/23/11
End-Date of Record:

Railroad: NS Norfolk Southern Corp. [NS]
Initiating Agency State Type and Position: Public At Grade

Part I Location and Classification of Crossing

Division: ALCANY State: NY
Subdivision: BUFFALO County: ERIE
Branch or Line Name: BUFFALO City: In HAMBURG
Railroad Milepost: 0011.65 Street or Road Name: CLOVERBANK RD
Railroad I.D. No.: L
Nearest RR Timetable Stn: HAMBURG HSR Corridor ID:
Parent Railroad:
Crossing Owner:
ENS Sign Installed: Yes
Passenger Service: None
Avg Passenger Train Count: 1
Adjacent Crossing with Separate Number: Yes 519501T

Private Crossing Information:

Category: Public Access: Unknown
Specify Signs: Specify Signals:
ST/RR A ST/RR B ST/RR C ST/RR D
Railroad Use:
State Use:
Narrative:

Emergency Contact: (800)453-2530 Railroad Contact: (800)946-4744 State Contact: (518)457-5521

Part II Railroad Information

Number of Daily Train Movements:

Total Trains: 18 Total Switching: 0
Less Than One Movement Per Day: No
Day Thru: 8
Typical Speed Range Over Crossing: From 40 to 60 mph Maximum Time Table Speed: 60
Type and Number of Tracks: Main: 1 Other: 0

Does Another RR Operate a Separate Track at Crossing? Yes: CSX
Does Another RR Operate Over Your Track at Crossing? No
Part III: Traffic Control Device Information

Signs:
- Crossbucks: 2
- Advanced Warning: Yes
- Pavement Markings: No Markings
- Highway Stop Signs: 0
- Hump Crossing Sign: No
- Other Signs: 1

Train Activated Devices:
- Gates: 2
- Mast Mounted FL: 2
- Cantilevered FL (Over): 0
- Other Flashing Lights: 6
- Highway Traffic Signals: 0
- Other Train Activated Warning Devices: None
- Special Warning Devices Not Train Activated: None
- Type of Train Detection: None

Other Flashing Lights:
- ON GATES
- On Gates
- Specify Other Flashing Lights
- 1

Part IV: Physical Characteristics

Type of Development: Residential
Smallest Crossing Angle: 60 to 90 Degrees

Number of Traffic Lanes: 2

Is Highway Paved? Yes
Crossing Surface: Asphalt and Flange

Nearby Intersecting Highway? 76 to 200 feet
Does Track Run Down a Street? No

Is Commercial Power Available? Yes

Is It Signalized? No
Is Crossing Illuminated? Yes

Part V: Highway Information

Highway System: Non-Federal-aid
Functional Classification of Road at Crossing: Urban Local

Is Crossing on State Highway System? No

Annual Average Daily Traffic (AADT): 002239
AADT Year: 2010

Estimated Percent Trucks: 04
Avg. No of School Buses per Day: 2

Posted Highway Speed: 35
Note: The term “generator” in this document refers to both pedestrian generators (where pedestrians originate) and destinations (where pedestrians travel to).
A check of “yes” indicates a potential need to accommodate pedestrians and coordination with the Regional Bicycle and Pedestrian Coordinator is necessary during project scoping. Answers to the following questions should be checked with the local municipality to ensure accuracy.

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is there an existing or planned sidewalk, trail, or pedestrian-crossing facility?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Are there bus stops, transit stations or depots/terminals located in or within 800 m of the project area?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is there more than occasional pedestrian activity? Evidence of pedestrian activity may include a worn path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are there existing or approved plans for generators of pedestrian activity in or within 800 m of the project that promote or have the potential to promote pedestrian traffic in the project area, such as schools, parks, playgrounds, places of employment, places of worship, post offices, municipal buildings, restaurants, shopping centers, or other commercial areas, or shared-use paths?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Are there existing or approved plans for seasonal generators of pedestrian activity in or within 800 m of the project that promote or have the potential to promote pedestrian traffic in the project area, such as ski resorts, state parks, camps, amusement parks?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is the project located in a residential area within 800 m of existing or planned pedestrian generators such as those listed in 4 above?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. From record plans, were pedestrian facilities removed during a previous highway reconstruction project?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Did a study of secondary impacts indicate that the project promotes or is likely to promote commercial and/or residential development within the intended life cycle of the project?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Does the community’s comprehensive plan call for development of pedestrian facilities in the area?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Based on the ability of students to walk and bicycle to school, would the project benefit from engineering measures under the Safe-Routes-To-School program? Eligible infrastructure-related improvements must be within a 3.2 km radius of the project.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This checklist should be revisited due to a project delay or if site conditions or local planning changes during the project development process.

Comments:

Regional Bicycle and Pedestrian Coordinator:

Project Designer:
Pavement Evaluation and Treatment Selection Report

D.1. Introduction

This report, the Pavement Evaluation and Treatment Selection Report (PETSIR) is the technical document for evaluation of selection of pavement design alternatives for the Rogers Road and Cloverbank Road project and was conducted according to the NYSDOT Comprehensive Pavement Design Manual (CPDM).

The project is located in the Town of Hamburg, Erie County, NY. The project is located at the CSX Transportation (CSXT) and Norfolk Southern (NS) railroad crossings at Rogers Road (C.R. 464) and Cloverbank Road and extends approximately 150 feet east and west of the crossings.

Exhibit D.1
Project Location Map
This study identified pavement design alternatives for resurfacing, restoration and rehabilitation of the existing pavement design for Rogers Road and Cloverbank Road. This report includes the following:

a) Investigation of existing conditions
b) Design of pavement alternatives using ESAL based design methods
c) Selection of appropriate pavement treatment

D.2. Existing Conditions

D.2.1. As-Builts

Record plans for Rogers Road were provided by Erie County DPW Highway Division. Rogers Road was constructed by two separate projects between 1957 and 1962. The pavement from sta. 13+50 to 22+00 was reconstructed and the crossing approaches elevated by PSC Case no. 17313 in 1957. The abutting roadway segments were reconstructed in 1962 to a width of 30± feet with approximately 11-foot travel lanes. The pavement section was constructed with 2-1/2 inch asphalt concrete course, a 4-inch bituminous macadam course, a 12-inch subbase course and surface dusting with fine aggregate. This is consistent with the depths obtained from pavement cores taken in the travel lane and shoulder.

No record plans are available for Cloverbank Road. Based on information obtained from the pavement cores and soil borings, the pavement section consists of approximately 15-1/2 inches of asphalt and 15 inches of subbase.

Existing pavement conditions were observed by Erdman Anthony during a site visit on August 10, 2012. The pavement and shoulders on Rogers Road are in good condition and show few signs of rutting, longitudinal cracking, or other deterioration. The roadway approaches are constructed on an embankment in excess of five feet from the surrounding terrain. Given these conditions, it appears that the existing pavement structure is sufficient and subgrade soils are not frost susceptible.

Pavement conditions on Cloverbank Road were fair to poor, with significant wheelpath cracking, edge cracking, and wheelpath rutting. These types of distresses are indicative of poor subgrade support, frost action, inadequate drainage, insufficient pavement thickness, and poor lateral (shoulder) support. The roadbed is in a shallow cut section at the grade crossing approaches, which suggests that the underlying soils are poorly draining and susceptible to frost heave. This is confirmed by wet conditions encountered in the underlying subbase and subgrade materials during the soil borings. The pavement section itself is sufficiently thick given adequate drainage conditions.

D.2.2. Roadway Data

Rogers Road and Cloverbank Road were analyzed to determine the projected Annual Average Daily Traffic (AADT), percent heavy vehicles (% Trucks) and compound growth rate projected from the Expected Time of Completion (ETC). Exhibit D.2.2-A includes roadway data required for the pavement design process.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Functional Classification</th>
<th>AADT</th>
<th>% Trucks</th>
<th>Annual Truck Volume Growth Rate</th>
<th>Design Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers Road</td>
<td>Urban Major Collector</td>
<td>7587</td>
<td>5.0%</td>
<td>1.0%</td>
<td>25 yrs</td>
</tr>
<tr>
<td>Cloverbank Road</td>
<td>Urban Local</td>
<td>2284</td>
<td>5.0%</td>
<td>1.0%</td>
<td>25 yrs</td>
</tr>
</tbody>
</table>

D.2.3. Geotechnical

Sub-surface exploration has been performed in the project area. The resilient modulus (M_R) values were calculated for both Rogers Road and Cloverbank Road. The estimated M_R values were determined based on factors that converted the results from the field California Bearing Ratio (CBR) tests. The M_R of Rogers Road was estimated to be 5000 psi (34 MPa) and the M_R of Cloverbank Road was estimated to be 9000 psi (62 MPa).
psi (62 MPa). CBR values of 4.5% and 29.5% were used for Rogers Road and Cloverbank Road respectively. The field CBR test results are included in the geotechnical evaluation report. The conversion factors used are included in NCHRP Report 128, *Evaluation of AASHTO Interim Guides for Design of Pavement Structures*.

\(M_R \) of 5000 psi to 7000 psi are characteristic of the fine to medium-grained soils located under most NYS roadways according to NYSDOT *CPDM* §6.6.2. The \(M_R \) is a measure of the stiffness of the subgrade and a higher \(M_R \) value is indicative of stronger subgrade soil which will provide better support to the pavement. The existing pavement compositions are tabulated below in Exhibit D.2.3-A.

Exhibit D.2.3-A

<table>
<thead>
<tr>
<th>Layer</th>
<th>Rogers Road</th>
<th>Cloverbank Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Concrete Overlay</td>
<td>6.5 inches</td>
<td>15 inches</td>
</tr>
<tr>
<td>Sub-base Aggregate</td>
<td>12 inches</td>
<td>15 inches</td>
</tr>
<tr>
<td>Sub-Grade ((M_R))</td>
<td>5000 psi</td>
<td>9000 psi</td>
</tr>
</tbody>
</table>

D.3. Life-Cycle Cost Analysis

A life-cycle cost analysis was not performed since the project is classified as a 3R project.

D.4. Treatment Selection

The pavement treatment selection is conducted according to the NYSDOT *CPDM* and the PRM *Volume II*. The pavement treatment proposed for this project will be rehabilitation and widening of Rogers Road and Cloverbank Road. Typical Sections based on these designs can be found in the Final Design Report: Appendix A.

The pavement thickness designs for Rogers Road and Cloverbank Road were calculated using the ESAL calculator developed from the NYSDOT *CPDM* and the AASHTO Guide for Design of Pavement Structure. The ESAL flexible pavement design calculations are included in Attachment D.1. Rogers Road and Cloverbank Road will be designed as rehabilitation with widening with flexible pavement. The pavement thickness design for both roadways is shown in Exhibit D.2.1-A. Cloverbank Road will have geotextile separation underneath the subbase course for the black Silt (topsoil) found in the borings.

The results of the ESAL calculator were checked against to insure accuracy and are shown in Exhibit D.4.1-A.

Exhibit D.4.1-A

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Thickness</th>
<th>Layer</th>
<th>Technical Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rogers Road</td>
<td></td>
</tr>
<tr>
<td>402.126302</td>
<td>1.5 inches</td>
<td>Top</td>
<td>12.5 F2 Top Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>402.196902</td>
<td>2.5 inches</td>
<td>Binder</td>
<td>19 F9 Binder Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>402.376902</td>
<td>4.0 inches</td>
<td>Base</td>
<td>37.5 F9 Base Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>304.12</td>
<td>15.0 inches</td>
<td>Subbase</td>
<td>Subbase Course, Type 2</td>
</tr>
</tbody>
</table>

Cloverbank Road

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Thickness</th>
<th>Layer</th>
<th>Technical Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>402.126302</td>
<td>1.5 inches</td>
<td>Top</td>
<td>12.5 F2 Top Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>402.196902</td>
<td>2.5 inches</td>
<td>Binder</td>
<td>19 F9 Binder Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>402.376902</td>
<td>3.0 inches</td>
<td>Base</td>
<td>37.5 F9 Base Course HMA, 60 Series Compaction</td>
</tr>
<tr>
<td>304.12</td>
<td>12.0 inches</td>
<td>Subbase</td>
<td>Subbase Course, Type 2</td>
</tr>
</tbody>
</table>

Note: Lift thickness must comply with criteria in CPDM Table 6-6
D.5. Summary

The typical sections in the Final Design Report: Appendix A, are based on finding from this report. Exhibit D.4.1-A describe the recommended pavement designs for Rogers Road and Cloverbank Road.
Pavement Thickness Design
Based on NYS Thickness Design Manual for New and Reconstructed Pavements

P.I.N. 5759.70
Description Rogers Road Railroad Quiet Zone

Table A-6 80-kN (18 KIP) ESAL calculation work sheet "simple" method with simple traffic growth

<table>
<thead>
<tr>
<th>Item #</th>
<th>Input Parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design Life</td>
<td>25 Years</td>
</tr>
<tr>
<td>2</td>
<td>Initial AADT</td>
<td>7587 Vehicles / Day</td>
</tr>
<tr>
<td>3</td>
<td>Percent Heavy Trucks (Class 5 or Greater)</td>
<td>5.00 %</td>
</tr>
<tr>
<td>4</td>
<td>Percent Trucks in Design Direction</td>
<td>50.0 %</td>
</tr>
<tr>
<td>5</td>
<td>Percent Trucks in Design Lane</td>
<td>100.0 %</td>
</tr>
<tr>
<td>6</td>
<td>Truck Equivalency Factor</td>
<td>1.35 80 kN Loads / Vec</td>
</tr>
<tr>
<td>7</td>
<td>Annual Truck Volume Growth Rate</td>
<td>1.0 %</td>
</tr>
<tr>
<td>8</td>
<td>Annual Truck Weight Growth Rate</td>
<td>0.5 %</td>
</tr>
</tbody>
</table>

Traffic Analysis for Pavement Design:

<table>
<thead>
<tr>
<th>Item #</th>
<th>Traffic Volume Growth Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>[1 + Item 7] (Item 1-1) = 1.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Truck Growth Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>[1 + Item 8] (Item 1-1) = 1.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Design Year AADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Item 2 x Item 9 = 9,633 Vehicles/ Day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Average AADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>(Item 2 + Item 11)/2 = 8,610 Vehicles/ Day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Design Year Truck Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Item 6 x Item 10 = 1.52 80 kN Loads / Vec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Average Truck Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(Item 6 + Item 13)/2 = 1.44 80 kN Loads / Vec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>AADT in One Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(Item 12 X Item 4) = 4,305 Vec / Day/ Direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Truck AADT in One Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(Item 15 X Item 3) = 215 Trucks / Day/ Direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Daily 80 kN (18 kip) Esal Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>(Item 14 X Item 12) = 309 80 kN Loads/Day/Direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Total 80 kN (18 kip) ESAL Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>(Item 15 X 365 X Item 1 X Item 5) = 2,820,278 80 kN Loads / Design Life</td>
</tr>
</tbody>
</table>
Flexible Pavement Design

From Regional Geotechnical Group

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 MPa</td>
<td>5 ksi</td>
</tr>
</tbody>
</table>

Total 80 kN (ESAL) Loads over design life.

2.8 Million

From Table 3; Pavement Design Manual:

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer Thickness</td>
<td>200 mm</td>
</tr>
<tr>
<td>Permeable Type II base</td>
<td>0 mm</td>
</tr>
<tr>
<td>Subbase Course</td>
<td>300 mm</td>
</tr>
<tr>
<td>Select Granular Subgrade Thickness</td>
<td>0 mm</td>
</tr>
<tr>
<td>Total pavement section depth</td>
<td>500 mm</td>
</tr>
</tbody>
</table>

Design Inputs

<table>
<thead>
<tr>
<th>a1</th>
<th>0.42</th>
<th>Structural coefficient of the AC layer (top, binder and base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0 unknown</td>
<td>Thickness of the asphalt concrete courses (top, binder and base)</td>
</tr>
<tr>
<td>a2</td>
<td>0.23</td>
<td>Structural coefficient of the asphalt-treated permeable base</td>
</tr>
<tr>
<td>D2</td>
<td>0 unknown</td>
<td>Thickness of the asphalt-treated permeable base</td>
</tr>
<tr>
<td>a3</td>
<td>0.12</td>
<td>Structural coefficient of the subbase course</td>
</tr>
<tr>
<td>D3</td>
<td>0.00 unknown</td>
<td>Thickness of the subbase course</td>
</tr>
<tr>
<td>m3</td>
<td>0.9</td>
<td>Drainage coefficient of the subbase course</td>
</tr>
<tr>
<td>a4</td>
<td>0.1</td>
<td>Structural coefficient of the select granular subgrade course</td>
</tr>
<tr>
<td>D4</td>
<td>0.00 unknown</td>
<td>Thickness of the select granular subgrade course</td>
</tr>
<tr>
<td>m4</td>
<td>0.9</td>
<td>Drainage coefficient of the select granular subgrade course</td>
</tr>
</tbody>
</table>

| Sn | 4.7306 | Structural number determined in previous step |

Equation

\[
Sn = (a1*D1)+(a2*D2)+(a3*D3*m3)+(a4*D4*m4)
\]

Results

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Concrete</td>
<td>D1 = 8.00 inches</td>
</tr>
<tr>
<td>Permeable Base</td>
<td>D2 = 0.00 inches</td>
</tr>
<tr>
<td>Subbase Course</td>
<td>D3 = 15.00 inches</td>
</tr>
<tr>
<td>Subgrade Course</td>
<td>D4 = 0.00 inches</td>
</tr>
</tbody>
</table>

TOTAL SN

4.98

REQUIRED SN

4.73

TOTAL

23.00
Pavement Thickness Design

Based on NYS Thickness Design Manual for New and Reconstructed Pavements

P.I.N. 5759.70
Description Cloverbank Road Railroad Quiet Zones

Table A-6

80-kN (18 KIP) ESAL calculation work sheet "simple" method with simple traffic growth

<table>
<thead>
<tr>
<th>Item #</th>
<th>Input Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design Life</td>
<td>25 Years</td>
</tr>
<tr>
<td>2</td>
<td>Initial AADT</td>
<td>2284 Vehicles / Day</td>
</tr>
<tr>
<td>3</td>
<td>Percent Heavy Trucks (Class 5 or Greater)</td>
<td>5.00 %</td>
</tr>
<tr>
<td>4</td>
<td>Percent Trucks in Design Direction</td>
<td>50.0 %</td>
</tr>
<tr>
<td>5</td>
<td>Percent Trucks in Design Lane</td>
<td>100.0 %</td>
</tr>
<tr>
<td>6</td>
<td>Truck Equivalency Factor</td>
<td>1.35 80 kN Loads / Vec</td>
</tr>
<tr>
<td>7</td>
<td>Annual Truck Volume Growth Rate</td>
<td>1.0 %</td>
</tr>
<tr>
<td>8</td>
<td>Annual Truck Weight Growth Rate</td>
<td>0.5 %</td>
</tr>
</tbody>
</table>

Traffic Analysis for Pavement Design:

<table>
<thead>
<tr>
<th>Item #</th>
<th>Traffic Volume Growth Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Truck Growth Factor</td>
<td>1.13</td>
</tr>
<tr>
<td>11</td>
<td>Design Year AADT</td>
<td>2,900 Vehicles / Day</td>
</tr>
<tr>
<td>12</td>
<td>Average AADT</td>
<td>2,592 Vehicles / Day</td>
</tr>
<tr>
<td>13</td>
<td>Design Year Truck Factor</td>
<td>1.52 80 kN Loads / Vec</td>
</tr>
<tr>
<td>14</td>
<td>Average Truck Factor</td>
<td>1.44 80 kN Loads / Vec</td>
</tr>
<tr>
<td>15</td>
<td>AADT in One Direction</td>
<td>1,296 Vec / Day/ Direction</td>
</tr>
<tr>
<td>16</td>
<td>Truck AADT in One Direction</td>
<td>65 Trucks / Day/ Direction</td>
</tr>
<tr>
<td>17</td>
<td>Daily 80 kN (18 kip) Esal Count</td>
<td>93 80 kN Loads/Day/Direction</td>
</tr>
<tr>
<td>18</td>
<td>Total 80 kN (18 kip) ESAL Count</td>
<td>849,020 80 kN Loads / Design Life</td>
</tr>
</tbody>
</table>
Flexible Pavement Design (NYSDOT Comprehensive Pavement Design Manual)

<table>
<thead>
<tr>
<th>Step</th>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mr Value (From Regional Geotechnical Group)</td>
<td>62 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 ksi</td>
</tr>
<tr>
<td>2</td>
<td>Total 80 kN (ESAL) Loads over design life.</td>
<td>0.8 Million</td>
</tr>
<tr>
<td></td>
<td>From Table 3; Pavement Design Manual:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC Layer Thickness</td>
<td>155 mm</td>
</tr>
<tr>
<td></td>
<td>Permeable Type II base</td>
<td>0 mm</td>
</tr>
<tr>
<td></td>
<td>Subbase Course</td>
<td>300 mm</td>
</tr>
<tr>
<td></td>
<td>Select Granular Subgrade Thickness</td>
<td>0 mm</td>
</tr>
<tr>
<td></td>
<td>Total pavement section depth</td>
<td>455 mm</td>
</tr>
</tbody>
</table>

Design Inputs (ESAL Design)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESAL</td>
<td>8.49E+05</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>-1.282</td>
<td></td>
</tr>
<tr>
<td>So</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Mr</td>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>3.6608</td>
<td>Input this value until log(esal) converge</td>
</tr>
</tbody>
</table>

LOG(ESAL) = \((Zr \times So) \times (9.36 \times \text{LOG}(Sn+1)) - 0.2 + \text{LOG}((Po-Pt)/(4.2-1.5)) / (0.4+1094/(Sn+1)^{5.19}) + (2.32 \times \text{LOG}(Mr)) - 8.07\)

Log(ESAL) = 5.9289

<table>
<thead>
<tr>
<th>Design Inputs</th>
<th>Resulting SN/Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>use Sn = 3.66</td>
<td>Structural number determined in previous step</td>
</tr>
<tr>
<td>a1 0.42 D1 0 unknown</td>
<td>Structural coefficient of the AC layer (top, binder and base) 2.94</td>
</tr>
<tr>
<td>a2 0.23 D2 0 unknown</td>
<td>Structural coefficient of the asphalt-treated permeable base 0.00</td>
</tr>
<tr>
<td>a3 0.12 D3 0 unknown</td>
<td>Structural coefficient of the subbase course 1.30</td>
</tr>
<tr>
<td>m3 0.9</td>
<td>Drainage coefficient of the subbase course</td>
</tr>
<tr>
<td>a4 0.1 D4 0 unknown</td>
<td>Structural coefficient of the select granular subgrade course 0.00</td>
</tr>
<tr>
<td>m4 0.9</td>
<td>Drainage coefficient of the select granular subgrade course</td>
</tr>
</tbody>
</table>

Equation

Sn =\((a1 \times D1) + (a2 \times D2) + (a3 \times D3 \times m3) + (a4 \times D4 \times m4)\)

TOTAL SN = 4.24

REQUIRED SN = 3.66

Results

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Concrete</td>
<td>D1 = 7.00 Inches</td>
</tr>
<tr>
<td>Permeable Base</td>
<td>D2 = 0.00 Inches</td>
</tr>
<tr>
<td>Subbase Course</td>
<td>D3 = 12.00 Inches</td>
</tr>
<tr>
<td>Subgrade Course</td>
<td>D4 = 0.00 Inches</td>
</tr>
</tbody>
</table>

19.00 TOTAL
Subsurface Log

Boring No.: B-1R
Elevation: N/A

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Start Depth</th>
<th>Finish Depth</th>
<th>Weather</th>
<th>Temp</th>
<th>Driller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ 18/ 13</td>
<td></td>
<td>0 ft.</td>
<td>6.5 ft.</td>
<td>Cloudy</td>
<td>20 F</td>
<td>RB</td>
</tr>
</tbody>
</table>

Drilling Method/Size of Casing: 2.25 inch ID HSA
Type of Sampler: Split Spoon
Type of Drill Rig: Soil Max (Truck)
Sample Hammer WT/Fall: 140 lbs/30 inches

Project: Erdman Anthony - Road Borings
Rogers Road
Location: Hamburg, New York

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Blows on Sampler</th>
<th>"N" Value</th>
<th>REC</th>
<th>Classification of Soil/Rock Materials/Well</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 0- 2.5 | S - 1 | 2 | 22 | 53 | 0.0' - 0.5': Asphalt Pavement (0.3' top; 0.2' base)
0.5' - 2.5': Gray-blk. SLAG/GRANVLE Subbase | Gray & Black CRUSHED STONE/CINDERS, moist (FILL) |
| 2.5- 4.5 | S - 2 | 6 | 5 | 10 | 1.0' | Brown Clayey SILT and fine/coarse Sand, some Cinders, moist (FILL) |
| 4.5- 6.5 | | 5 | 4 | | 5.5' | Boring Complete at 6.5 feet |

bgs = below ground surface

Well Materials: ___-inch PVC/Steel Screen/Riser
____ Slot

Sand: ________ Bentonite: ________ Cement/Grout: ________ bags

Quality Inspection Services, Inc., 37 Franklin Street, Buffalo, New York, 14202, Tel: 716-853-2611
Subsurface Log

Boring No.: B-2R
Elevation: N/A

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Start Depth</th>
<th>Finish Depth</th>
<th>Weather</th>
<th>Temp</th>
<th>Driller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18/13</td>
<td></td>
<td>0 ft.</td>
<td>6.5 ft.</td>
<td>Cloudy</td>
<td>20 F</td>
<td>RB</td>
</tr>
</tbody>
</table>

Drilling Method/Size of Casing: 2.25 inch ID HSA
Type of Drill Rig: Soil Max (Truck)
Sample Hammer WT/Fall: 140 lbs/30 inches
Type of Sampler: Split Spoon
Project: Erdman Anthony - Road Borings
Location: Hamburg, New York

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Blows on Sampler</th>
<th>"N" Value</th>
<th>REC</th>
<th>Classification of Soil/Rock Materials/Well</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.05</td>
<td>S -1</td>
<td>42 50</td>
<td>87</td>
<td>2.0'</td>
<td>0.0'-1.05': Asphalt Pavement (0.55' top; 0.5' base) Gray CRUSHED STONE/SLAG, moist (FILL)</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>S -2</td>
<td>28 25</td>
<td>45</td>
<td>1.5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>S -3</td>
<td>40 30</td>
<td>48</td>
<td>1.5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6.5</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td>Boring Complete at 6.5 feet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asphalt/Petro. odors noted at Boring Comp.</td>
<td></td>
</tr>
</tbody>
</table>

bgs = below ground surface
Well Materials: ___-inch PVC/Steel Screen/Riser # ____ Slot
Sand: ________ Bentonite: ________ Cement/Grout: ________ bags

Quality Inspection Services, Inc., 37 Franklin Street, Buffalo, New York, 14202, Tel: 716-853-2611
CALIFORNIA BEARING RATIO TESTING RESULTS (ASTM D 4429)

Date: 1/18/2013
Project No.: ROC.13.003
Project: Hamburg Pavement Coring
Location: B-1R - Rogers Road
Depth: 31 inches below top of asphalt
Material Description: Fill: Slag, Gravel, Sand, Silt

Test Description: ASTM D4429 - CBR of Soils in Place

Test B-1R (Surcharge: 20 lbs.)

Penetration Test Data

<table>
<thead>
<tr>
<th>Pen. in.</th>
<th>Dial Reading</th>
<th>Stress psi</th>
<th>CBR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>3</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>5</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td>7</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>9</td>
<td>45.0</td>
<td>4.5</td>
</tr>
<tr>
<td>0.125</td>
<td>11</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>13</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>0.175</td>
<td>15</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>16</td>
<td>80.0</td>
<td>5.3</td>
</tr>
<tr>
<td>0.225</td>
<td>17</td>
<td>85.0</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>18</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>21</td>
<td>105.0</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>25</td>
<td>125.0</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>28</td>
<td>140.0</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>32</td>
<td>160.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>33</td>
<td>165.0</td>
<td></td>
</tr>
</tbody>
</table>

Penetration Resistance (psi) vs Penetration Depth (in.)

Dashed line is curve linearity correction

Roc Geotechnical Consulting Engineers
Subsurface Log

Boring No.: B-1C
Elevation: N/A

<table>
<thead>
<tr>
<th>Date</th>
<th>Start Depth</th>
<th>Finish Depth</th>
<th>Weather</th>
<th>Temp</th>
<th>Driller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ 31/ 13</td>
<td>0 ft.</td>
<td>6.5 ft.</td>
<td>Cloudy</td>
<td>20 F</td>
<td>RB</td>
</tr>
</tbody>
</table>

Drilling Method/Size of Casing: 2.25 inch ID HSA
Type of Sampler: Split Spoon
Type of Drill Rig: Soil Max (Truck)
Project: Erdman Anthony - Road Borings
Cloverbank Road
Location: Hamburg, New York

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Blows on Sampler</th>
<th>"N" Value</th>
<th>REC</th>
<th>Classification of Soil/Rock Materials/Well</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0- 1.2</td>
<td>S -1</td>
<td>14 12</td>
<td>22</td>
<td>1.5'</td>
<td>Brown fractured ROCK FRAGMENTS, little</td>
<td>Core breaks at: 0.2' and 0.7'</td>
</tr>
<tr>
<td>1.2- 3</td>
<td>S -1</td>
<td>10 7</td>
<td></td>
<td>0.5'</td>
<td>Black fine/coarse SAND, little fine/medium Gravel, trace Silt, wet (FILL)</td>
<td></td>
</tr>
<tr>
<td>3- 5</td>
<td>S -2</td>
<td>5 4</td>
<td>10</td>
<td>0.3'</td>
<td>- trace Gravel</td>
<td></td>
</tr>
<tr>
<td>5- 6.5</td>
<td>S -3</td>
<td>7 9</td>
<td>21</td>
<td>0.5'</td>
<td>Gry.-blk. FRACTURED ROCK, little Silt, wet</td>
<td></td>
</tr>
</tbody>
</table>

Well Materials: ___-inch PVC/Steel Screen/Riser
Sand: __________
Bentonite: __________
Cement/Grout: __________
bags

Quality Inspection Services, Inc., 37 Franklin Street, Buffalo, New York, 14202, Tel: 716-853-2611
Subsurface Log

Boring No.: B-2C
Elevation: N/A

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Start Depth</th>
<th>Finish Depth</th>
<th>Driller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18/13</td>
<td></td>
<td>0 ft.</td>
<td>6.5 ft.</td>
<td>RB</td>
</tr>
</tbody>
</table>

Drilling Method/Size of Casing: 2.25 inch ID HSA
Type of Sampler: Split Spoon
Type of Drill Rig: Soil Max (Truck)
Sample Hammer WT/FAI: 140 lbs/30 inches

Project: Erdman Anthony - Road Borings
Location: Hamburg, New York

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Blows on Sampler</th>
<th>"N" Value</th>
<th>Blows</th>
<th>Classification of Soil/Rock Materials/Well</th>
</tr>
</thead>
</table>
| 0 - 2.5 | S -1 | 3 4 | 5 0.7 | | 0.0'-1.3': Asphalt Pavement (0.55' top; 0.75' base)
| | | | | | 1.2'-Crushed Stone (Subbase Materials)
| 2.5 - 4.5 | S -1 | 2 2 | 5 0.7 | | Black SILT (Topsoil), little fine/coarse
| | | | | | Sand, moist
| | S -2 | 3 2 | 4 0.6 | | 0.0'-1.3': Gry.-blk. FRACTURED ROCK, some Clayey
| | | | | | Silt, moist
| | | | | | Boring Complete at 6.5 feet |

bgs = below ground surface
Well Materials: ___-inch PVC/Steel Screen/Riser
Sand: __________ Bentonite: __________ Cement/Grout: __________ bags

Quality Inspection Services, Inc., 37 Franklin Street, Buffalo, New York, 14202, Tel: 716-853-2611
CALIFORNIA BEARING RATIO TESTING RESULTS
(ASTM D 4429)

Date: 1/18/2013
Project No.: ROC.13.003
Project: Hamburg Pavement Coring
Location: B-2C- Cloverbank Road
Depth: 30 inches below top of asphalt
Material Description: Brown Silty SAND, little Gravel
Test Description: ASTM D4429 - CBR of Soils in Place

Test B-2C (Surcharge: 20 lbs.)

Penetration Test Data

<table>
<thead>
<tr>
<th>Pen. in.</th>
<th>Dial Reading</th>
<th>Stress psi</th>
<th>CBR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>32</td>
<td>160.0</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>41</td>
<td>205.0</td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td>51</td>
<td>255.1</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>59</td>
<td>295.1</td>
<td>29.5</td>
</tr>
<tr>
<td>0.125</td>
<td>70</td>
<td>350.1</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>89</td>
<td>445.1</td>
<td></td>
</tr>
<tr>
<td>0.175</td>
<td>105</td>
<td>525.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>122</td>
<td>610.1</td>
<td>40.7</td>
</tr>
<tr>
<td>0.225</td>
<td>140</td>
<td>700.1</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>145</td>
<td>725.1</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>155</td>
<td>775.2</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>170</td>
<td>850.2</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>191</td>
<td>955.2</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>210</td>
<td>1050.2</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>222</td>
<td>1110.2</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F
NON-STANDARD FEATURE JUSTIFICATION

(VACANT)
Public Involvement Plan

This Public Involvement (PI) Plan has been prepared and conducted in general accordance with the NYSDOT Project Development Manual (PDM) Appendix 2: Public Involvement Manual.

G.1. Project Information

G.1.1. Project Identification

Rogers Road and Cloverbank Road Railroad Quiet Zones
PIN: 5759.70
Erie County
Town of Hamburg

G.1.2. Initial Project Proposal (IPP)

An Initial Project Proposal (IPP) was prepared for the project on March 27, 2012 by the Town of Hamburg. The IPP was approved by the Regional Planning & Program Manager on May 17, 2012.

G.1.3 Project Type

This PI is for a highway project located in the Town of Hamburg, Erie County, NY. The project is located at the CSX Transportation (CSXT) and Norfolk Southern (NS) railroad crossings at Rogers Road (C.R. 464) and Cloverbank Road and extends approximately 150 feet east and west of the crossings. The preliminary environmental classifications are as follows:
NEPA – Class II Programmatic
SEQR – Type II

G.1.4. Costs and Project Schedule

Design Approval is scheduled for August 2013, with construction beginning in fall 2013 and lasting approximately 8 months.

```
<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Occurred/Tentative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoping Approval</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Approval</td>
<td>Summer 2013</td>
</tr>
<tr>
<td>Construction Start</td>
<td>Fall 2013</td>
</tr>
<tr>
<td>Construction Complete</td>
<td>Spring 2014</td>
</tr>
</tbody>
</table>
```

G.1.5. Previous Public Involvement

The public has had opportunities for involvement during the various planning studies that have been prepared for the project.

G.1.6. Project Coordination

Project coordination that occurred during the preparation of this report primarily involved correspondence with agencies to determine the environmental significance of the project.
Exhibit G.1.6
Included Correspondence

<table>
<thead>
<tr>
<th>Date</th>
<th>Correspondence</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24, 2012</td>
<td>Letter from G. Kapsiak</td>
<td>Railroad Quiet Zones Notice of Intent</td>
</tr>
<tr>
<td>May 14, 2013</td>
<td>Letter from N. Conrad to J. Zhao</td>
<td>NY National Heritage Program</td>
</tr>
<tr>
<td>July 30, 2013</td>
<td>Letter from S. Jones to K. Felgemacher</td>
<td>Section 106 Recommendations</td>
</tr>
</tbody>
</table>

G.2. Context Identification

G.2.1. Identify Stakeholders

The stakeholders in this project are as follows:

- New York State Department of Transportation (NYSDOT)
- Erie County DPW Highway Division
- CSX Transportation and Norfolk Southern Corp.
- Residents and businesses adjacent to the project

G.2.2. Identify Potential Concerns

Potential concerns are as follows:

- Aged and deteriorated pavement
- Quality of life of the community
- Protecting public waters from storm water pollution
- Limiting impacts to abutting properties
- Limiting impacts on existing flood plains

G.2.3. Community Impact Assessment

The project is not anticipated to negatively impact the community in the project study area. The project will improve pavement conditions and provide Supplemental Safety Measures in accordance with current FRA guidelines to allow for the implementation of the quiet zones.

G.3. PI Plan Objectives

G.3.1. Anticipated level of PI

Stakeholders have been highly involved in the project development process and continued public involvement is anticipated.

G.3.2. Structured Decision Making

The Town of Hamburg is the project sponsor, as well as the SEQR Lead Agency, and is responsible for selection of the preferred alternative. The preferred alternative was selected after extensive coordination with regulatory agencies, project stakeholders, and the public.

G.4. PI Plan Activities

Public involvement activities shall be coordinated with project development milestones. Project information shall be made available to stakeholders prior to coordination of public information meetings. Exhibit 1.7 shows the anticipated PI schedule.
A Public Information Meeting on the project was held on March 1, 2006 at the Frontier Middle School. Representatives from the Town, CSX Transportation, Norfolk Southern, and Federal Railroad Administration were in attendance. Updates regarding the project have been given at various Town Board meetings, on the Town website, and through an e-mail contact list of interested residents.

Exhibit 1.7
Public Involvement Plan Schedule of Milestone Dates

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Occurred/Tentative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Information Meeting</td>
<td>March 1, 2006</td>
</tr>
<tr>
<td>In House Scoping Meeting</td>
<td>March 25, 2013</td>
</tr>
<tr>
<td>Current Project Letting</td>
<td>Fall 2013</td>
</tr>
</tbody>
</table>
TOWN OF HAMBURG, NEW YORK
NOTICE OF INTENT
TO CREATE RAILROAD QUIET ZONES

In accordance with the regulations associated with the Federal Railroad Administration’s (FRA) Train Horn Rule, we are hereby notifying all appropriate parties of the Town of Hamburg’s intention to create two railroad quiet zones through public authority designation. Per the FRA regulations, please submit any questions, comments, or related information in regard to this Notice of Intent to the Town contact person shown on Page 3 within 60 days (by no later than July 23, 2012).

The Town of Hamburg (population 56,936) is located in Erie County, 11 miles south of the City of Buffalo. The quiet zones are proposed to be established over a 4.3 mile length of the CSX and Norfolk Southern (NS) railroad tracks which traverse the Town from north to south. These quiet zones will prohibit the use of horns for trains traveling along this length except in emergency situations where an imminent danger is perceived by the train engineer. This will serve to improve the quality of life for the approximately 20,000 Town residents who live within hearing range of these railroad tracks. It will also provide benefits to daily activities at several schools and recreational facilities that are located in close proximity to the tracks.

Per the FRA requirements in this regard, we are hereby providing the following information under this notification:

(1) The following grade crossings are located with the Town of Hamburg’s proposed quiet zones (see attached location maps):

<table>
<thead>
<tr>
<th>Grade Crossing Inventory No.</th>
<th>Street Name</th>
<th>Railroad</th>
<th>Type of Crossing</th>
<th>Highway Jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>519502A</td>
<td>Rogers Road</td>
<td>CSX</td>
<td>Public</td>
<td>Erie County</td>
</tr>
<tr>
<td>471716C</td>
<td>Rogers Road</td>
<td>NS</td>
<td>Public</td>
<td>Erie County</td>
</tr>
<tr>
<td>519501T</td>
<td>Cloverbank Road</td>
<td>CSX</td>
<td>Public</td>
<td>Town of Hamburg</td>
</tr>
<tr>
<td>471717J</td>
<td>Cloverbank Road</td>
<td>NS</td>
<td>Public</td>
<td>Town of Hamburg</td>
</tr>
</tbody>
</table>

Each of the above grade crossings is presently equipped with flashing lights and gates. The two CSX crossings (Rogers Road and Cloverbank Road) are to constitute one quiet zone, while the second quiet zone will be comprised of the two NS crossings (Rogers Road and Cloverbank Road).

(2) It is intended that the train horn restrictions will be in effect on a continuous 24 hour daily basis.

(3) The tentative plan for implementing required supplemental safety measures within the quiet zones is to install 3 feet wide mountable concrete medians with reflective channelization devices along the centerline of the highway for a distance of 100 feet from the crossing gate arm on each side of the tracks at the following grade crossings:
- Rogers Road (CSX and NS)
- Cloverbank Road (CSX and NS)

Photos and further info about this SSM are presented in the attached June 2010 FRA Research Report entitled “Use of Traffic Channelization Devices at Highway-Rail Grade Crossings” (see Figures 1 and 3 for examples that are similar to what the Town is proposing). The Town has also contacted other municipalities with installations of this type in northern climates (in Montana, Michigan, and Indiana), and they all reported no problems with snowplowing or any other factors in this regard.

In order to compensate for the width of the medians, the highway pavement is proposed to be widened along the approaches to these crossings as part of the project, as follows:

- For the Rogers Road crossing, the current pavement widths are 32' west of the CSX tracks, 29' between the CSX and NS tracks, and 30' east of the NS tracks. It is proposed that the pavement be widened to a uniform width of 32' in this area [11.5' travel lanes (with striping), 3' shoulders, 3' median = 32' total width].

- For the Cloverbank Road crossing, the current pavement widths are 28' west of the CSX tracks, 25' between the CSX and NS tracks, and 26.5' east of the NS track. It is proposed that the pavement be widened to a uniform width of 30' in this area [11.5' travel lanes (with striping), 2' shoulders, 3' median = 30' total width].

It is additionally noted that the two railroads, in conjunction with the New York State Dept. of Transportation, are in the process of undertaking a project to upgrade the existing signal and gate equipment at these crossings. They have agreed to provide wider track beds as part of their project, in order to accommodate the increased approach pavement width associated with the Town’s quiet zone project. Construction of their equipment upgrade project is scheduled for early-spring 2013.

(4) Through the use of the FRA Quiet Zone Calculator and data in the most recent U.S. Dept. of Transportation Grade Crossing Inventory forms for each crossing, the following risk indices have been cumulatively determined for the grade crossings within the proposed quiet zones:

<table>
<thead>
<tr>
<th>Index</th>
<th>CSX</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationwide Significant Risk Threshold (NSRT)</td>
<td>13,722</td>
<td>13,722</td>
</tr>
<tr>
<td>Risk Index with Horns (RIWH)</td>
<td>47,416</td>
<td>27,631</td>
</tr>
<tr>
<td>Existing Quiet Zone Risk Index (QZRI)</td>
<td>79,090</td>
<td>49,424</td>
</tr>
<tr>
<td>QZRI with Supplemental Safety Measures (SSMs)</td>
<td>19,772</td>
<td>12,356</td>
</tr>
</tbody>
</table>
In that the QZRI with SSMs is less than the RIWH for each of the quiet zones, the proposed quiet zones are qualified to be established, on the basis established by FRA that the SSMs sufficiently reduce the risk index to a level which allows train horns to not be sounded without compromising the safety of motorists. Copies of the scenario spreadsheets generated by the FRA Quiet Zone Calculator in this regard are enclosed.

(5) The Town of Hamburg has received a total of $525,000 in Federal and State funding for this project. It is expected that the project will be able to be completed within the limits of this funding.

(6) The Town of Hamburg is in the process of preparing and issuing a Request for Proposals to engineering consultants for design services associated with this project. It is anticipated that construction will be initiated in May 2013 (following completion of the aforementioned signal and gate upgrade project) and be completed within four months thereafter, following which the quiet zones will be put into place.

(7) The Town’s contact person for the development of the quiet zones is as follows:
 Name: Gerard M. Kapsiak P.E.
 Title: Town Engineer
 Address: Town of Hamburg
 6100 South Park Avenue
 Hamburg, New York 14075
 Phone: (716) 649-6111, ext. 2355
 Fax: (716) 649-2522
 E-Mail: gkapsiak@townofhamburgny.com

(8) This Notice of Intent has been sent to the following:
• Robert Lauby, Acting Associate Administrator for Safety
 Federal Railroad Administration
 1200 New Jersey Avenue, SE
 Washington, D.C. 20590

• Cliff R. Stayton, Director of Public Affairs & Safety
 CSX Transportation, Inc.
 500 Water Street (C205)
 Jacksonville, Florida 32202

• William L. Barringer, Director of Grade Crossing Safety
 Norfolk Southern Corp.
 1200 Peachtree St., NE
 Box 36
 Atlanta, Georgia 30309-0036
• Joan McDonald, Commissioner
 New York State Dept. of Transportation
 50 Wolf Road
 Albany, New York 12205

• Darrell F. Kaminski, P.E., Acting Regional Director
 New York State Dept. of Transportation
 100 Seneca Street
 Buffalo, New York 14203

• John Loffredo, P.E., Commissioner
 Erie County Dept. of Public Works
 Division of Highways
 95 Franklin Street
 Buffalo, New York 14202

Respectfully submitted,

Gerard M. Kapsiak, P.E.
Town Engineer

Date Distributed: May 24, 2012
Use of Traffic Channelization Devices at Highway-Rail Grade Crossings

SUMMARY

Traffic channelization devices have a long history of use on highways as a means to separate vehicular traffic or to accommodate smooth traffic flow. These devices have found new applications as safety measures at highway-rail grade crossings. Studies on driver behavior at grade crossings indicate that a strong correlation exists between violations of the crossing warning devices and collisions. Deterring the risky behavior of driving around a lowered gate makes the grade crossing a safer environment.

The U.S. Department of Transportation (DOT) Federal Railroad Administration (FRA) promotes the use of traffic channelization devices at highway-rail grade crossings with active warning devices, where applicable. The traffic channelization devices provide a proven safety benefit without the same hindrances to mobility that occur with crossing closure or the costs associated with four-quadrant gate systems. Median barriers that meet the criteria within the Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings are approved supplemental safety measures for the establishment of a quiet zone. Many studies have been performed at locations where driver violations occurred at highway-rail grade crossings and after installation of channelization devices at these locations; a significant reduction in driver violations occurred.

The purpose of this research is to provide information about the use of traffic channelizing devices at highway-rail grade crossings. It includes a survey of the types of installations available, considerations for design, quiet zones, and special circumstances, as well as a discussion on the effectiveness of traffic channelization devices at improving safety at highway-rail grade crossings.

Figure 1: Traffic Channelization Devices (photo courtesy of NCDOT)
BACKGROUND

Since 1994, collisions at highway-rail grade crossings have declined by more than 40 percent. However, in 2008, 286 fatalities occurred in 2,391 highway-rail grade crossing collisions [1]. Eliminating these incidents altogether continues to pose a challenge. Studies on driver behavior at grade crossings indicate that a strong correlation between violations of the crossing warning devices and collisions. Deterring the risky behavior of driving around a lowered gate makes the grade crossing a safer environment.

The U.S. Department of Transportation (DOT) Federal Railroad Administration (FRA) promotes the use of traffic channelization devices at highway-rail grade crossings with active warning devices where applicable. In 2008, the FRA Office of Safety issued the brochure, “Guidance on the Use of Traffic Channelizing Devices at Highway-Rail Grade Crossings” [2], which was designed to assist in the selection of the appropriate traffic channelization device. It is distributed on the FRA Web site and at rail conferences with the hope of encouraging traffic engineers to pursue traffic channelization at grade crossings.

OBJECTIVES

The objective of this research is to provide information about the use of traffic channelization devices at highway-rail grade crossings. The information is intended for the use of transportation professionals and practitioners when considering improvements to highway-rail grade crossings.

METHODS

The approach to this project was to gather pertinent information about the use of traffic channelization devices at highway-rail grade crossings. States have already installed these at grade crossings in an effort to improve compliance with the active warning devices and in turn, safety at the crossings. The experiences of states and researchers can be shared to encourage the appropriate use of median barriers at highway-rail grade crossings.

FINDINGS

Traffic Channelization Options

Wide raised medians provide the opportunity to include landscaping in its design. Although not a barrier, it can be an effective deterrent against violations of the crossing warning devices.

Barrier wall systems typically consist of concrete barriers, which are the most effective deterrent against circumventing lowered gates, but require a wide section between the roadway lanes.

Nonmountable curb islands can be described as an island 6 to 9 inches high and 2 feet wide in which common roadway vehicles cannot mount and cross the island. This does cause concern, however, of increased crash risk and severity along the roadway and should be used judiciously.

Mountable raised curb seem to be the most effective traffic channelization device. It has minimal impact on the existing roadway and can easily be removed, if necessary. Raised vertical panels should always be installed with this system. The panels provide a visual deterrent to circumventing a lowered gate.

Installations at Crossings within a Quiet Zone

One of the most frequent uses of median barriers at highway-rail grade crossings is in conjunction with the establishment of a quiet zone. The Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings standardized the establishment of quiet zones.
One of the supplemental safety measures (SSM) identified in this rule is gates with medians or channelization devices. The intent of an SSM is to reduce the risk at the crossing to permit the silencing of the train horn. The use of channelization devices as SSMs must be compliant with the specification outlined in the rule. Per the rule, the channelization devices or median barriers must be installed on both approaches to the crossing. This prevents drivers from circumventing the lowered gates by approaching the crossing in the opposing lane. The median barriers or channelization devices must extend 100 feet from the crossing gate arm, or if an intersection is within 100 feet of the crossing, the channelization device must extend 60 feet. Any intersections within 60 feet of the crossing should be closed or relocated.

One major reason that channelization devices are a popular installation at quiet zones is the cost. The cost of some SSMs can be prohibitive. For example, four-quadrant gate installations can cost upwards of $250,000. The installation of median barriers at a crossing costs on average $14,000 [3]. This magnitude of cost difference makes channelization devices an attractive safety measure to reduce risk at highway-rail grade crossings.

The Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings states that the recommended length for a median barrier at a highway-rail grade crossing is 100 feet. However, a divided roadway for 100 feet could restrict access to intersecting streets or driveways within the 100-foot zone. An analysis of traffic patterns should be performed to see if the installation of a median barrier is appropriate for that location.

The installation of traffic channelization devices at highway-rail grade crossings requires the cooperation of many stakeholders. It is in the interest of the railroad to improve safety at the crossing and they are often the chief proponent of implementing a crossing with traffic channelization devices. However, because the traffic channelization devices extend beyond the right of way of the railroad, the roadway authority must also be involved. The local government will be in the best position to negotiate the purchase of additional frontage should there be any changes to the roadway width to accommodate median barriers.

Effectiveness

Several demonstration studies have been conducted that included an evaluation of the reduction of risky driver behavior after traffic channelization devices were installed at a grade crossing. Because incidents are rare, the studies frequently used circumventing the gates or other unsafe behavior as a surrogate. When the results from a variety of studies were averaged, it indicated that unsafe driver actions at grade crossings...
crossings were reduced by 68 percent after the installation of traffic channelization devices. The Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings assigned a 75 percent effectiveness rating to traffic channelization devices over crossings equipped with two-quadrant gates, which is in general agreement with the studies.

CONCLUSIONS

The installation of traffic channelization devices at highway rail grade crossings has proven to be a cost-effective means of improving safety. The traffic channelization devices provide a proven safety benefit without the same hindrances to mobility that occur with crossing closure or the costs associated with four-quadrant gate systems. Median barriers/traffic channelization devices that meet the criteria within the Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings are approved supplemental safety measures for the establishment of a quiet zone.

Implementing median barriers at a highway-rail grade crossing with active warning devices can reduce the risk of a collision at that crossing.

REFERENCES

ACKNOWLEDGEMENTS

This work is performed under an interagency agreement between FRA’s Signals, Train Control, and Communications Division in the Office of Research and Development and the Volpe National Transportation Systems Center’s System Engineering and Safety Division.

AUTHORS

Suzanne M. Horton
Volpe Center
Systems Engineering and Safety Division
55 Broadway
Cambridge, MA 02142
Tel: (617) 494-3678
E-mail: Suzanne.Horton@dot.gov

CONTACT

Leonard Allen
Federal Railroad Administration
Office of Research and Development
1200 New Jersey Avenue, SE – Mail Stop 20
Washington, DC 20590
Tel: (202) 493-6329 Fax: (202) 493-6333
E-mail: Leonard.Allen@dot.gov

KEYWORDS

Traffic channelization devices, median barriers, highway-rail grade crossings, railroad safety
PROPOSED TOWN OF HAMBURG RAILROAD QUIET ZONE
CSX CROSSINGS (EXISTING CONDITIONS)

Create New Zone
Manage Existing Zones
Log Off

Step by Step Instructions:
Step 1: To specify New Warning Device (For Pre-Rule Quiet Zone Only) and/or SSM, click the MODIFY Button

Step 2: Select proposed warning device or SSM. Then click the UPDATE button. To generate a spreadsheet of the values on this page, click on ASM button—This spreadsheet can then be used for ASM calculations.

Step 3: Repeat Step (2) until the SELECT button is shown at the bottom right side of this page. Note that the SELECT button is shown ONLY when the Quiet Zone Risk Index falls below the NSRT or the Risk Index with Horn.

Step 4: To save the scenario and continue, click the SELECT button

Summary

Proposed Quiet Zone: HAMBURG-CSX-ROGERS & CLOVERBANK
Type: New 24-hour QZ
Scenario: HAMBURG-CS_37828
Estimated Total Cost: $0.00
Nationwide Significant Risk Threshold: 13722.00
Risk Index with Horns: 47415.91
Quiet Zone Risk Index: 79089.74

Only Public At Grade Crossings are listed.
Click for Supplementary Safety Measures (SSM)
Click for ASM spreadsheet: ASM
Note: The use of ASMs requires an application to and approval from the FRA.

519501T CLOVERBANK RD 2239 Gates 0 0 104,568.90 MODIFY
519502A ROGERS RD 7405 Gates 0 0 53,610.57 MODIFY

5/14/2012
PROPOSED TOWN OF HAMBURG RAILROAD QUIET ZONE
CSX CROSSINGS (WITH SUPPLEMENTAL SAFETY MEASURES)

Crossing	Street	Traffic	Warning Device	Pre-SSM	SSM	Risk
519501T | CLOVERBANK RD| 2239 | Gates | 0 | 12 | 26,142.23 |
519502A | ROGERS RD | 7405 | Gates | 0 | 12 | 13,402.64 |

* Only Public At Grade Crossings are listed.

Step by Step Instructions:

Step 1: To specify New Warning Device (For Pre-Rule Quiet Zone Only) and/or SSM, click the MODIFY button.

Step 2: Select proposed warning device or SSM. Then click the UPDATE button. To generate a spreadsheet of the values on this page, click on ASM button—This spreadsheet can then be used for ASM calculations.

Step 3: Repeat Step (2) until the SELECT button is shown at the bottom right side of this page. Note that the SELECT button is shown ONLY when the Quiet Zone Risk Index falls below the NSRT or the Risk Index with Horn.

Step 4: To save the scenario and continue, click the SELECT button.

Summary

Proposed Quiet Zone: Hamburg-CSX-Rogers & Cloverbank
Type: New 24-hour QZ
Scenario: HAMBURG-CS_37828
Estimated Total Cost: $26,000.00
Nationwide Significant Risk Threshold: 13722.00
Risk Index with Horn: 47415.91
Quiet Zone Risk Index: 19772.43

ALERT: Quiet Zone qualifies because SSM has been applied in each crossing.

Click for Supplementary Safety Measures [SSM]

Click for ASM spreadsheet: ASM * Note: The use of ASM requires an application to and approval from the FRA.

PROPOSED TOWN OF HAMBURG RAILROAD QUIET ZONE
NORFOLK SOUTHERN CROSSINGS (EXISTING CONDITIONS)

Step by Step Instructions:

Step 1: To specify New Warning Device (For Pre-Rule Quiet Zone Only) and/or SSM, click the MODIFY button.

Step 2: Select proposed warning device or SSM. Then click the UPDATE button. To generate a spreadsheet of the values on this page, click on ASM button—This spreadsheet can then be used for ASM calculations.

Step 3: Repeat Step (2) until the SELECT button is shown at the bottom right side of this page. Note that the SELECT button is shown ONLY when the Quiet Zone Risk Index falls below the NSRT or the Risk Index with Horn.

Step 4: To save the scenario and continue, click the SELECT button.

Summary

<table>
<thead>
<tr>
<th>Proposed Quiet Zone:</th>
<th>HAMBURG-NS-ROGERS & CLOVERBANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>New 24-hour QZ</td>
</tr>
<tr>
<td>Scenario:</td>
<td>HAMBURG-NS_37829</td>
</tr>
<tr>
<td>Estimated Total Cost:</td>
<td>$0.00</td>
</tr>
<tr>
<td>Nationwide Significant Risk Threshold:</td>
<td>13722.00</td>
</tr>
<tr>
<td>Risk Index with Horns:</td>
<td>29630.99</td>
</tr>
<tr>
<td>Quiet Zone Risk Index:</td>
<td>49424.48</td>
</tr>
</tbody>
</table>

Click for Supplementary Safety Measures [SSM]

Click for ASM spreadsheet: ASM

* Only Public At Grade Crossings are listed.

Note: The use of ASMs requires an application to and approval from the FRA.
PROPOSED TOWN OF HAMBURG RAILROAD QUIET ZONE
NORFOLK SOUTHERN CROSSINGS (WITH SUPPLEMENTAL SAFETY MEASURES)

Create New Zone
Manage Existing Zones
Log Off

Step by Step Instructions:

Step 1: To specify New Warning Device (For Pre-Rule Quiet Zone Only) and/or SSM, click the MODIFY button

Step 2: Select proposed warning device or SSM. Then click the UPDATE button. To generate a spreadsheet of the values on this page, click on ASM button—This spreadsheet can then be used for ASM calculations.

Step 3: Repeat Step (2) until the SELECT button is shown at the bottom right side of this page.
Note that the SELECT button is shown ONLY when the Quiet Zone Risk Index falls below the NSRT or the Risk Index with Horn.

Step 4: To save the scenario and continue, click the SELECT button

+ Only Public At Grade Crossings are listed.

ALERT: Quiet Zone qualifies because SSM has been applied in each crossing.

Click for Supplementary Safety Measures [SSM]

Click for ASM spreadsheet: ASM

* Note: The use of ASMs requires an application to and approval from the FRA.

Summary

- Proposed Quiet Zone: HAMBURG-NS-ROGERS & CLOVERBANK
- Type: New 24-hour QZ
- Scenario: HAMBURG-NS_37829
- Estimated Total Cost: $26,000.00
- Nationwide Significant Risk Threshold: 13722.00
- Risk Index with Horns: 29630.99
- Quiet Zone Risk Index: 12356.12

Select

5/14/2012
May 14, 2013

Jia Zhao
Erdman Anthony
2165 Brighton Henrietta Town Rd
Rochester, NY 14623

Dear Ms. Zhao:

In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to an Environmental Assessment for the Proposed Project – PIN 5759.70, site as indicated on your enclosed map, located in the Town of Hamburg, Erie County.

We have no records of rare or state listed animals or plants, or significant natural communities, on, or in the immediate vicinity, of your project sites.

The absence of data does not necessarily mean that rare or state-listed species, or significant natural communities, do not exist on or adjacent to the proposed site. Rather, our files currently do not contain information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. We cannot provide a definitive statement on the presence or absence of all rare or state-listed species or significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

This response applies only to known occurrences of rare or state-listed animals and plants, significant natural communities and other significant habitats maintained in the Natural Heritage Databases. Your project may require additional review or permits; for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, as listed at www.dec.ny.gov/about/39381.html.

Sincerely,

Nicholas Conrad, Information Services
NYS Department Environmental Conservation

Enc.
cc: Reg. 9, Wildlife Mgr.

434
TO: Kurt Felgemacher, Regional Local Project Liaison

FROM: Sylvia Jones, Regional Cultural Resource Coordinator

SUBJECT: PROJECT SUBMITTAL PACKAGE - SECTION 106 RECOMMENDATIONS
HAMBURG RAILROAD QUIET ZONE
TOWN OF HAMBURG, ERIE COUNTY
PIN 5759.70

DATE: July 30, 2013

As the Regional Cultural Resource Coordinator, I have reviewed the Project Submittal Package (PSP) prepared for the above referenced Locally Administered Federal Aid project for assessment of obligations under Section 106 of the National Historic Preservation Act (36 CFR Part 800).

Based on review of this PSP, I conclude:

☑ The project activities have no potential to cause effects on historic properties in accordance with 36 CFR 800.3(a)(1) therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act. This determination should be recorded in the project environmental documentation.

☐ The project activities may cause effects on historic properties:

☐ However, no historic properties are present. Therefore, there are no further obligations for compliance with Section 106 of the National Historic Preservation Act. This determination should be recorded in the project environmental documentation.

☐ A Cultural Resource Survey is needed to identify historic and cultural resources.

☐ A bridge inventory and evaluation of National Register eligibility is needed for BIN _________, a pre-1961 bridge that has not been previously evaluated.

☐ A Finding Documentation package is needed to assess the project effect on previously identified National Register (NR) listed property(s) and/or NR eligible historic bridge(s).

☐ The following additional information is needed to complete our assessment:

☐ Detailed project description
☐ Project location map showing project limits (USGS Quad)
☐ BIN and date of construction for pre-1961 bridge(s)
☐ Documentation of prior ground disturbance
☐ Photos of buildings
☐ Information from SHPO web site (archaeological sensitivity and NR listed buildings)
☐ Other

SJJ/FRG/mwb
INITIAL PROJECT PROPOSAL

PIN: 575970

DATE SUBMITTED: 3/27/12

PROJECT TITLE: ESTABLISHMENT OF RAILROAD QUIET ZONES IN THE TOWN OF HAMBURG, NEW YORK (FFY 2009 APPROPRIATIONS DEMO NO. NY 749)

FUNCTIONAL CLASS.: County & Town Roads

FED. AID SYSTEM: [] Interstate [] NHS [X] Non-NHS

PROBLEM DESCRIPTION: CSX and Norfolk Southern Railroad train horns are required to be sounded at all hours, disrupting the quality of life for approximately 20,000 Town residents living within hearing range of the tracks, as well as at several schools and recreational facilities located in close proximity to the tracks.

PROPOSED OBJECTIVES: To silence train horns through the installation of supplemental safety measures in compliance with Federal Railroad Administration requirements at the Rogers Road and Cloverbank Road crossings, thereby creating quiet zones along a 4.3 mile length of the parallel and adjacent CSX and Norfolk Southern tracks.

PRELIMINARY SOLUTION: Installation of 3 feet wide mountable concrete medians with reflective channelization devices along the centerline of the roads for a distance of 100 feet on each side of the CSX and Norfolk Southern crossings on Rogers Road and Cloverbank Road.

RELATIONSHIP TO LONG RANGE PLAN:

GOAL Safety

PERF. FAPI Score

MEAS. % > 1%

ENVIRONMENTAL CLASSIFICATION:

[] NEPA Class I or SEQR Non-Type II (EIS)
[X] NEPA Class II or SEQR Type II (CE)
[] NEPA Class III or SEQR Non-Type II
[] SEQR Non-Type II (DR)
[] SEQR Exempt (Unlisted)

LANE KM (MILES): 0.40 mi CENTERLINE KM (MILES): 0.20 mi

AADT: 7405 (Rogers) TRUCK %: 5%
2239 (Cloverbank) 4%

NUMBER OF BRIDGES: 0 BIN(S): N/A
<table>
<thead>
<tr>
<th>PROJECT PHASES</th>
<th>ACTIVITY DURATION (Months)</th>
<th>ESTIMATED COST</th>
<th>FUND SOURCE</th>
<th>OBLIGATION/LET DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Design (1 - 4)</td>
<td>6</td>
<td>$0.025 M</td>
<td>LOCAL (NYSDOS Contract No. TM07157)</td>
<td>5/1/12</td>
</tr>
<tr>
<td>Detailed Design (5 - 6)</td>
<td>6</td>
<td>$0.025 M</td>
<td>LOCAL (NYSDOT Contract No. TM60503)</td>
<td>5/1/12</td>
</tr>
<tr>
<td>Construction</td>
<td>6</td>
<td>$0.450 M</td>
<td>09 SPEC APPROP - SECT 125</td>
<td>5/1/13 LET</td>
</tr>
<tr>
<td>Construction Inspection</td>
<td>6</td>
<td>$0.025 M</td>
<td>09 SPEC APPROP - SECT 125</td>
<td>5/1/13 LET</td>
</tr>
<tr>
<td>TOTAL PROJECT</td>
<td>6</td>
<td>$0.525 M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BASIS OF COST ESTIMATE: Federal Railroad Administration Quiet Zone Calculator cost estimates, vendor quotes, and construction bid prices.

BOND FUNDS: [] YES [X] NO

2005-2010 TRANSPORTATION MOU: [] YES [X] NO

FUND MATCH: [] STATE [] LOCAL (specify) [X] N/A

SPECIAL PROJECT CIRCUMSTANCES AND/OR PROGRAMMING REQUIREMENTS: FFY 2009 Appropriations Demo No. NY 749; 100% Federal Funds; Town of Hamburg is the sponsor. This project is to be coordinated with grade crossing projects, PINs 593323, 593324, 593326, and 593327.
ATTACHMENTS: General Location Map
 Specific Location Maps
Exhibit H.1
Table of Anticipated Property Releases

<table>
<thead>
<tr>
<th>TRN</th>
<th>Property Address</th>
<th>Tax Account</th>
<th>Reputed Owner</th>
<th>Type of Release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative 5, 5A & 5B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cloverbank Road</td>
<td>169.16-16-1</td>
<td>Niagara Mohawk Power Corp.</td>
<td>Grading</td>
</tr>
<tr>
<td>2</td>
<td>Cloverbank Road</td>
<td>169.16-16-2</td>
<td>CSX Transportation</td>
<td>Grading</td>
</tr>
<tr>
<td>3</td>
<td>Rogers Road & Cloverbank Road</td>
<td>169.16-16-3</td>
<td>Norfolk & Western Railroad Co.</td>
<td>Grading</td>
</tr>
</tbody>
</table>